Advertisement

Dynamics of Stick-Slip: Some Universal and Not So Universal Features

  • G. Ananthakrishna
  • R. De
Part of the Lecture Notes in Physics book series (LNP, volume 705)

Abstract

Stick-slip is usually observed in driven dissipative threshold systems. In these set of lectures, we discuss, some generic and system specific features of stickslip systems by considering a few examples wherein there has been some progress in understanding the associated dynamics. In most stick slip systems, both at low and high drive rates, the system slides smoothly, but within a window of drive rates, the motion becomes intermittent; the system alternately “sticks” till the stress builds up to a threshold value, and then “slips” when the stress is rapidly released. This intermittent motion can be traced to the existence of an unstable branch separating the two resistive branches in the force-drive-rate relation. While the two resistive branches are experimentally measurable, the unstable branch is usually not measurable and is only inferred.

Keywords

Acoustic Emission Solute Atom Acoustic Emission Signal Mobile Dislocation Dynamic Strain Aging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.P. Bowden and D. Tabor, Friction and Lubrication of Solids, (Clarendon, Oxford, 1950).Google Scholar
  2. 2.
    E. Rabinowicz, Friction and Wear of Materials (Wiley, New York, 1995).Google Scholar
  3. 3.
    F. Heslot, T. Baumberger, B. Perrin, B. Caroli, and C. Caroli, Phys. Rev., E 49, 4973 (1994).CrossRefGoogle Scholar
  4. 4.
    C.H. Scholz, The Mechanics of Earthqukes and Faulting, Cambridge University, (2002) p. 250.Google Scholar
  5. 5.
    T. Baumberger, Solid State Commun., 102, 175 (1997).CrossRefGoogle Scholar
  6. 6.
    R. Burridge and L. Knopoff, Bull. Seissmol. Soc. Am. 57, 341 (1967).Google Scholar
  7. 7.
    J.M. Carlson and J.S. Langer, Phys. Rev. Lett. 62, 2632 (1989); Phys. Rev. A 40 6470 (1989).CrossRefGoogle Scholar
  8. 8.
    J. Schmittbuhl, J.P. Vilotte and S. Roux, J. Geophys. Res. 101, B12, 27 714 (1996).Google Scholar
  9. 9.
    L.P. Kubin, C. Fressengeas, and G. Ananthakrishna, in Dislocations in Solids, Edited by F.R.N. Nabarro and J.P. Hirth, (Elsevier Science, Amsterdam, 2002), Vol. 11.Google Scholar
  10. 10.
    F. Le Chatelier, Rev. de Métal 6, 914 (1909). A. Portevin and F. Le Chatelier, C.R. Acad. Sci. Paris 176, 507 (1923).Google Scholar
  11. 11.
    P. Penning, Acta. Metall. 20, 1169 (1972).CrossRefGoogle Scholar
  12. 12.
    D. Maugis and M. Barquins, in Adhesion 12, edited by K.W. Allen, (Elsevier, London, 1988), p. 205.Google Scholar
  13. 13.
    D.C. Hong and S. Yue, Phys. Rev. Lett. 74, 254 (1995).CrossRefGoogle Scholar
  14. 14.
    G. Ananthakrishna and M.C. Valsakumar, J. Phys. D, 15, L171 (1982).CrossRefGoogle Scholar
  15. 15.
    S. Rajesh and G. Ananthakrishna, Phys. Rev. E 61, 3664 (2000).CrossRefGoogle Scholar
  16. 16.
    A.H. Cottrell, Dislocations and Plastic Flow in Crystals. (Clarendon Press, Oxford, 1953).Google Scholar
  17. 17.
    A. Van den Beukel, Phys. Stat. Solidi A 30, 197 (1975).Google Scholar
  18. 18.
    L.P. Kubin and Y. Estrin, Acta. Metall. 33, 397 (1985).CrossRefGoogle Scholar
  19. 19.
    K. Chihab, Y. Estrin, L.P. Kubin and J. Vergnol, Scripta. Metall. 21, 203 (1987).CrossRefGoogle Scholar
  20. 20.
    A. Rosen and S.R. Bodner, J. Mech. Phys. Solids, 15, 47 (1967); S.R. Bodner and A. Rosen, J. Mech. Phys. Solids, 15, 63 (1967).CrossRefGoogle Scholar
  21. 21.
    L.P. Kubin and Y. Estrin, J. de Physique 46, 497 (1986).Google Scholar
  22. 22.
    G. Ananthakrishna et al., Scripta. Metall. 32, 1731 (1995).CrossRefGoogle Scholar
  23. 23.
    S.J. Noronha et al., Int. Jl. of Bifurcation and Chaos 7, 2577 (1997).CrossRefGoogle Scholar
  24. 24.
    G. Ananthakrishna et al., Phys. Rev. E 60, 5455 (1999).CrossRefGoogle Scholar
  25. 25.
    S. Rajesh and G. Ananthakrishna, Physica D 140, 193 (2000).CrossRefGoogle Scholar
  26. 26.
    M.S. Bharathi et al., Phys. Rev. Lett. 87, 165508 (2001).CrossRefGoogle Scholar
  27. 27.
    G. Ananthakrishna and M.S. Bharathi, Phys. Rev. E 70, 026111 (2004).CrossRefGoogle Scholar
  28. 28.
    M.S. Bharathi, S. Rajesh and G. Ananthakrishna, Scripta Mater. 48, 1355 (2003).CrossRefGoogle Scholar
  29. 29.
    J. Bikermann, J. Appl. Phys. 28, 1484 (1957).CrossRefGoogle Scholar
  30. 30.
    D.H. Kaeble, J. Colloid Sci. 19, 413 (1963).CrossRefGoogle Scholar
  31. 31.
    D.W. Aubrey and M. Sheriif, J. Polym. Sci. Part A-1, 18, 2597 (1980).Google Scholar
  32. 32.
    M. Ciccotti, B. Giorgini and M. Barquins, Int. J. of Adhes. and Adhes. 18, 35 (1998).CrossRefGoogle Scholar
  33. 33.
    C. Gay and L. Leibler, Phys. Today 52, Issue 11, 48 (1999).Google Scholar
  34. 34.
    M. Barquins and M. Ciccotti, Int. J of Adhes. and Adhes. 17, 65 (1997).CrossRefGoogle Scholar
  35. 35.
    M.C. Gandur, M.U. Kleinke and F. Galembeck, J. Adhes. Sci. Technol. 11, 11 (1997).Google Scholar
  36. 36.
    D.C. Hong (private communication).Google Scholar
  37. 37.
    R. De, A. Maybhate and G. Ananthakrishna. Phys. Rev. E 70, 046223 (2004).CrossRefGoogle Scholar
  38. 38.
    R. De and G. Ananthakrishna, Phys. Rev. E 71, 055201(R) (2005).CrossRefGoogle Scholar
  39. 39.
    E. Hairer, C. Lubich and M. Roche, Numerical Solutions of Differential-algebraic Systems by Runge-Kutta Methods (Springer-Verlag, Berlin, 1989).Google Scholar
  40. 40.
    R.B. Bird, R.C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids (Wiley, New York, 1987) Vol. 1.Google Scholar
  41. 41.
    E. Lemaire, P. Levitz, G. Daccord and H. Van Damme, Phys. Rev. Lett. 67, 2009 (1991).CrossRefGoogle Scholar
  42. 42.
    L.P. Kubin, K. Chihab and Y. Estrin, Acta. Metall. 36, 2707 (1988).CrossRefGoogle Scholar
  43. 43.
    M.A. Lebyodkin, Y. Brechet, Y. Estrin and L.P. Kubin, Phys. Rev. Lett. 74, 4758 (1995).CrossRefGoogle Scholar
  44. 44.
    E.C.G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective (John Wiley and Sons, New York, 1974).Google Scholar
  45. 45.
    M. Diener, The Mathematical Intelligence, 6, 38 (1984).Google Scholar
  46. 46.
    H.D.I. Abarbanel, Analysis of Observed Chaotic Data (Springer-Verlag, New York, 1996).Google Scholar
  47. 47.
    L.D. Landau and E.M. Lifschitz, Theory of Elasticity (Pergamon, Oxford, 1986).Google Scholar
  48. 48.
    P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).CrossRefGoogle Scholar
  49. 49.
    H.J. Jensen, Self-Organised Criticality (Cambridge University Press, Cambridge, 1998).Google Scholar
  50. 50.
    I. Main, Rev. Geophys. 34, 433 (1996).CrossRefGoogle Scholar
  51. 51.
    Nature debate, http://helix.nature.com/debates/earthquake (1999).Google Scholar
  52. 52.
    C.H. Scholz, J. Geophys. Res. 73, 1417 (1968).Google Scholar
  53. 53.
    A. Lockner, J. Acous. Emission 14, S88 (1996).Google Scholar
  54. 54.
    P.R. Sammonds, P.G. Meredith and I.G. Main, Nature 359, 282 (1992).CrossRefGoogle Scholar
  55. 55.
    A. Gaurino et al. Eur. Phys. B 26, 141 (2002).CrossRefGoogle Scholar
  56. 56.
    A. Johansen and D. Sornette, Eur. Phys. B 18 163 (2000).CrossRefGoogle Scholar
  57. 57.
    I.G. Main and P.G. Meredith, Tectonophysics 167, 273 (1989).CrossRefGoogle Scholar
  58. 58.
    C.H. Scholz, The Mechanics of Earthquakes and Faulting (Cambridge University Press, 1990).Google Scholar
  59. 59.
    Y. Huang, H. Saleur, C. Sammis and D. Sornette, Europhys. Lett. 41, 43 (1998).CrossRefGoogle Scholar
  60. 60.
    J. Rosendahl, M. Vekic and J.E. Rutledge, Phys. Rev. Lett. 73, 537 (1994).CrossRefGoogle Scholar
  61. 61.
    S.L. Pepke and J.M. Carlson, Phys. Rev. E 50, 236 (1994).CrossRefGoogle Scholar
  62. 62.
    M. Acharyya and B.K. Chakrabarti, Phys. Rev. E 53, 140 (1996).CrossRefGoogle Scholar
  63. 63.
    R. De and G. Ananthakrishna, Europhys. Lett. 66, 715 (2004).CrossRefGoogle Scholar
  64. 64.
    A. Lockner et al., Nature 350, 39 (1991).CrossRefGoogle Scholar
  65. 65.
    K. Mogi, Bull. Earthquake Res. Inst. 40, 125 (1962).Google Scholar
  66. 66.
    C.H. Scholz, Bull. Seismol. Soc. Am. 58, 399 (1968).Google Scholar
  67. 67.
    B. Gutenberg and C.F. Richter, Ann. Geofis 9, 1 (1596).Google Scholar
  68. 68.
    S. Hainzl, G. Zoller and J. Kurths, Geophys. Res. Lett. 27, 597 (2000).CrossRefGoogle Scholar
  69. 69.
    P. Diodati, F. Marchesoni and S. Piazza, Phys. Rev. Lett. 67, 2239 (1991).CrossRefGoogle Scholar
  70. 70.
    A. Petri et al., Phys. Rev. Lett. 73, 3423 (1994).CrossRefGoogle Scholar
  71. 71.
    A. Garcimartin et al., Phys. Rev. Lett. 79, 3202 (1997).CrossRefGoogle Scholar
  72. 72.
    M.M. Carmen et al., Nature 410, 667 (2001).CrossRefGoogle Scholar
  73. 73.
    Y. Yabe et al., Pure Appl. Geophys 160, 1163 (2003).CrossRefGoogle Scholar
  74. 74.
    J.F. Pacheco, C.H. Scholz and L.R. Sykes, Nature 355, 71 (1992).CrossRefGoogle Scholar
  75. 75.
    Y. Yabe, Geophys. Res. Lett. 29, 10.1029/2001GL014369 (2002).CrossRefGoogle Scholar
  76. 76.
    R. Ahluwalia and G. Ananthakrishna, Phys. Rev. Lett. 86, 4076 (2001); S. Sreekala and G. Ananthakrishna, Phys. Rev. Lett. 90, 135501 (2003).CrossRefGoogle Scholar
  77. 77.
    J. Rice, J. Geophys. Res. 98, 9885 (1993); J. Rice and Ben-Zion, Proc. Natl. Acad. Sci. USA 93, 3811 (1996).Google Scholar
  78. 78.
    B.E. Shaw, J.M. Carlson and J.S. Langer, J. Geophys. Res. 97, 479 (1992).CrossRefGoogle Scholar
  79. 79.
    S. Brazovski and T. Nattermann, Adv. Phys. 53, 117 (2004).Google Scholar
  80. 80.
    J. Dumas et al., Phys. Rev. Lett. 50, 757 (1983).CrossRefGoogle Scholar
  81. 81.
    P.A. Lee and T.M. Rice, Phys. Rev. B 19, 3970 (1979).CrossRefGoogle Scholar
  82. 82.
    J. Dumas and D. Feinberg, Europhys. Lett. 2, 555 (1986).Google Scholar
  83. 83.
    J. Dumas, C. Schlenker, J. Marcus and R. Buder, Phys. Rev. Lett. 50, 757 (1983): J. Dumas and C. Schlenker, Lecture Notes in Physics, 217, 439 (1985).CrossRefGoogle Scholar
  84. 84.
    G. Ananthakrishna, J. Indian Inst. 78, 165 (1998).Google Scholar
  85. 85.
    K. Hirschberg et al., J. Cell. Biol. 143, 1485 (1998).CrossRefGoogle Scholar
  86. 86.
    A. Roux et al., PNAS, 99, 5394 (2002).CrossRefGoogle Scholar
  87. 87.
    T. Roopa and G. Shivashankar, Appl. Phys. Lett. 82, 1631 (2003).CrossRefGoogle Scholar
  88. 88.
    T. Roopa et al., Biophys. J. 87, 974 (2004).CrossRefGoogle Scholar
  89. 89.
    O. Rossier et al., Langmuir, 19, 575 (2003).CrossRefGoogle Scholar
  90. 90.
    I Derenyi, F. Julicher and J. Prost, Phys. Rev. Lett. 66, 238101 (2002).CrossRefGoogle Scholar
  91. 91.
    B. Bozic et al., Biophys. J. 61 963 (1992).Google Scholar
  92. 92.
    V. Heinrich et al., Biophys. J. 76 2056 (1999).CrossRefGoogle Scholar
  93. 93.
    T.R. Powers, G. Huber and R.E. Golstein, Phys. Rev. E 65, 041901 (2002).CrossRefGoogle Scholar
  94. 94.
    R.E. Waugh and R.M. Hochmuth, Biophys. J. 52 391 (1987).Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • G. Ananthakrishna
    • 1
  • R. De
    • 2
    • 3
  1. 1.Materials Research Centre and Centre for Condensed Matter TheoryIndian Institute of ScienceBangaloreIndia
  2. 2.Materials Research CentreIndian Institute of ScienceBangaloreIndia
  3. 3.Department of Materials and InterfacesWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations