Equilibration and Coarse-Graining Methods for Polymers

  • D.N. Theodorou
Part of the Lecture Notes in Physics book series (LNP, volume 704)


The broad spectra of length and time scales governing the physical properties of polymers call for hierarchical modelling methods, based on systematic coarse-graining of the molecular representation. This chapter examines some particularly promising elements of such a modelling hierarchy for predicting polymer properties.


Monte Carlo Atomistic Simulation Pair Distribution Function Kuhn Segment Rouse Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. J. Kotelyanskii and D. N. Theodorou, Eds. (2004) Simulation Methods for Polymers. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    D. N. Theodorou (2004) Understanding and predicting structure-property relations in polymeric materials through molecular simulations. Mol. Phys. 102, pp. 147–166CrossRefADSGoogle Scholar
  3. 3.
    L. R. Dodd and D. N. Theodorou (1994) Atomistic Monte Carlo Simulation and Continuum Mean Field Theory of the Structure and Equation of State Properties of Alkane and Polymer Melts. In Atomistic Modeling of Physical Properties, Eds. L. M. Monnerie and U. W. Suter, Adv. Polym. Sci. 116, pp. 249–281 Springer-Verlag, BerlinGoogle Scholar
  4. 4.
    R. Auhl, R. Everaers, G. S. Grest, K. Kremer, and S. J. Plimpton (2003) Equilibration of long chain polymer melts in computer simulations. J. Chem. Phys. 119, pp. 12718–12728CrossRefADSGoogle Scholar
  5. 5.
    D. N. Theodorou (2002) Variable Connectivity Monte Carlo Algorithms for the Atomistic Simulation of Long-Chain Polymer Systems. In Bridging Time Scales: Molecular Simulations for the Next Decade, Eds. P. Nielaba, M. Mareschal, and G. Ciccotti, pp. 69–128 Springer-Verlag, BerlinGoogle Scholar
  6. 6.
    L. Peristeras, I. Economou, and D. N. Theodorou (2005) Structure and volumetric properties of linear and triarm star polyethylenes from atomistic Monte Carlo simulation using new internal rearrangement moves. Macromolecules 38, pp. 386–397CrossRefADSGoogle Scholar
  7. 7.
    A. Uhlherr, M. Doxastakis, V. G. Mavrantzas, D. N. Theodorou, S. J. Leak, N. E. Adam, and P. E. Nyberg (2002) Atomic structure of a high polymer melt. Europhys. Lett. 57, pp. 506–511CrossRefADSGoogle Scholar
  8. 8.
    M. P. Allen and D. J. Tildesley (1987) Computer Simulation of Liquids. Oxford University Press, OxfordMATHGoogle Scholar
  9. 9.
    J. Baschnagel, K. Binder, P. Doruker, A. A. Gusev, O. Hahn, K. Kremer, W. L. Mattice, F. Müller-Plathe, M. Murat, W. Paul, S. Santos, U. W. Suter, and V. Tries (2000) Bridging the gap between atomistic and coarse-grained models of polymers: status and perspectives. Adv. Polym. Sci. 152, pp. 41–156CrossRefGoogle Scholar
  10. 10.
    F. Müller-Plathe (2002) Coarse-graining in polymer simulation: From the atomistic to the mesoscopic scale and back. Chem. Phys. Phys. Chem. 3, pp. 754–769Google Scholar
  11. 11.
    F. Müller-Plathe (2003) Scale-hopping in computer simulations of polymers. Soft Mater. 1, pp. 1–31CrossRefGoogle Scholar
  12. 12.
    W. Paul, K. Binder, K. Kremer, and D. W. Heermann (1991) Stucture property correlations in polymers: A Monte Carlo approach. Macromolecules 24, pp. 6332–6334CrossRefADSGoogle Scholar
  13. 13.
    P. Doruker and W. L. Mattice (1997) Reverse mapping of coarse-grained polyethylene chains from the second nearest-neighbor diamond lattice to an atomistic model in continuous space. Macromolecules 30, pp. 5520–5526CrossRefADSGoogle Scholar
  14. 14.
    G. Milano and F. Müller-Plathe (2005) Mapping atomistic simulations to mesoscopic models: A systematic coarse-graining procedure for vinyl polymer chains. J. Phys. Chem. B 109, pp. 18609–18619CrossRefGoogle Scholar
  15. 15.
    M. Doi and S. F. Edwards (1986) The Theory of Polymer Dynamics. Clarendon, OxfordGoogle Scholar
  16. 16.
    L. J. Fetters, D. J. Lohse, D. Richter, T. A. Witten, and A. Zirkel (1994) Meltchain polymer chain dimensions as functions of temperature. Macromolecules 27, pp. 4639–4647CrossRefADSGoogle Scholar
  17. 17.
    N. Zacharopoulos, N. Vergadou, and D. N. Theodorou (2005) Coarse-graining using pre-tabulated potentials: Liquid benzene. J. Chem. Phys. B 122, 244111CrossRefADSGoogle Scholar
  18. 18.
    H. Sun (1998) COMPASS: An ab initio force-field optimized for classical condensed-phase applications: Overview on details with alkane and benzene compounds. J. Phys. Chem. 102, pp. 7338–7364Google Scholar
  19. 19.
    R. B. Bird, R. C. Armstrong, and O. Hassager (1977) Dynamics of Polymeric Liquids. vol. I John Wiley, New YorkGoogle Scholar
  20. 20.
    W. Graessley (1993) Viscoelasticity and Flow in Polymer Melts and Concentrated Solutions. In Physical Properties of Polymers, Eds. J. E. Mark, A. Eisenberg, W. W. Graessley, L. Mandelkern, E. T. Samulski, J. L. Koenig, and G. D. Wignall 2nd Edition, ACS, Washington D.C.Google Scholar
  21. 21.
    A. E. Likhtman and T. M. McLeish (2002) Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 35, pp. 6332–6343CrossRefADSGoogle Scholar
  22. 22.
    L. J. Fetters, D. J. Lohse, and W. W. Graessley (1999) Chain dimensions and entanglement spacings in dense macromolecular systems. J. Polym. Sci. Part B: Polym. Phys. 37, pp. 1023–1033CrossRefADSGoogle Scholar
  23. 23.
    A. Wischnewski, M. Monkenbusch, L. Willner, D. Richter, A. E. Likhtman, T. M. McLeish, and B. Farago (2002) Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts. Phys. Rev. Lett. 88, 058301CrossRefADSGoogle Scholar
  24. 24.
    J. J. Benkoski, G. H. Fredrickson, and E. J. Kramer (2002) Model for the fracture energy of glassy polymer-polymer interfaces. J. Polym. Sci. Part B: Polym. Phys. 40, pp. 2377–2386CrossRefADSGoogle Scholar
  25. 25.
    T. A. Kavassalis and J. Noolandi (1987) New view of entanglements in dense polymer systems. Phys. Rev. Lett. 59, pp. 2674–2677CrossRefADSGoogle Scholar
  26. 26.
    R. Everaers, S. K. Sukumaran, G. S. Grest, C. Svedborg, A. Sivasubramanian, and K. Kremer (2004) Rheology and microscopic topology of entangled polymeric systems. Science 303, pp. 823–826CrossRefADSGoogle Scholar
  27. 27.
    V. Harmandaris, V. G. Mavrantzas, D. N. Theodorou, M. Kröger, J. Ramírez, H. C. Öttinger, and D. Vlassopoulos (2003) Crossover from the Rouse to the entangled polymer melt regime: Signals from long, detailed atomistic molecular dynamics simulations, supported by rheological experiments. Macromolecules 36, pp. 1376–1387CrossRefADSGoogle Scholar
  28. 28.
    V. Harmandaris, V. G. Mavrantzas, and D. N. Theodorou (1998) Atomistic Molecular Dynamics Simulation of Polydisperse Linear Polyethylene Melts. Macromolecules 31, pp. 7934–7943CrossRefADSGoogle Scholar
  29. 29.
    N. Karayiannis and V. G. Mavrantzas (2005) in preparationGoogle Scholar
  30. 30.
    Y. Masubuchi, G. Ianniruberto, F. Greco, and G. Marrucci (2003) Entanglement molecular weight and frequency response of sliplink networks. J. Chem. Phys. 119, pp. 6925–6930CrossRefADSGoogle Scholar
  31. 31.
    C. Tzoumanekas and D. N. Theodorou (2006) Topological analysis of linear polymer melts. Macromolecules 39, pp. 4592–4604CrossRefADSGoogle Scholar
  32. 32.
    S. F. Edwards (1977) Theory of rubber elasticity. Br. Polym. J. 9, pp. 140–143CrossRefGoogle Scholar
  33. 33.
    J. D. Schieber (2003) Fluctuations in entanglements of polymer liquids. J. Chem. Phys. 118, pp. 5162–5166CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • D.N. Theodorou
    • 1
  1. 1.School of Chemical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations