Social Interaction, Knowledge, and Social Software

  • Eric Pacuit
  • Rohit Parikh


Common Knowledge Winning Strategy Valuation Function Epistemic Logic Deontic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Aumann. Agreeing to Disagree, Annals of Statistics, 4:1236–1239.Google Scholar
  2. 2.
    R. Aumann. Interactive Epistemology I: Knowledge, International Journal of Game Theory, 28:263–300, 1999.zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Aumann. Interactive Epistemology II: Probability, International Journal of Game Theory, 28:301–314, 1999.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Brandenburger, Knowledge and Equilibrium in Games, Journal of Economic Perspectives, Vol. 6, 1992, pp. 83–101.Google Scholar
  5. 5.
    G. Bonanno, and P. Battigalli. Recent results on belief, knowledge and the epistemic foundations of game theory, Research in Economics 53, 2 (June 1999), 149–225.Google Scholar
  6. 6.
    M. Chwe, Rational Ritual: Culture, Coordination, and Common Knowledge, Princeton University Press, 2001.Google Scholar
  7. 7.
    R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning about Knowledge, The MIT Press, 1995.Google Scholar
  8. 8.
    M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs J. Comput. Syst. Sci., 18(2), pp. 194–211.Google Scholar
  9. 9.
    R. W. Floyd. Assigning meanings to programs, Proc. Symp. Appl. Math., Volume 19, pp. 19–31.Google Scholar
  10. 10.
    J. Geanakoplos and H. Polemarchakis. We Can’t Disagree Forever, Journal of Economic Theory, 28(1), 1982.Google Scholar
  11. 11.
    P. Gochet and P. Gribomont. Epistemic logic, In The Handbook of History and Philosophy of Logic, D. Gabbay and J. Woods, Eds., vol. 4. Elsevier, forthcoming.Google Scholar
  12. 12.
    D. Harel, D. Kozen and J. Tiuryn. Dynamic Logic, MIT Press, 2000.Google Scholar
  13. 13.
    J. Halpern, R. van der Meyden and M. Vardi. Complete Axiomatizations for Reasoning about Knowledge and Time, SIAM Journal on Computing, Vol 33, No. 3, 2004, pp. 674–703.zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Halpern. Set-theoretic completeness for epistemic and conditional logic, Annals of Mathematics and Artificial Intelligence 26 1999, pp. 1–27.Google Scholar
  15. 15.
    J. Halpern and Y. Moses, Knowledge and common knowledge in a distributed environment, Journal of the ACM, 37:3, 1990, pp. 549–587.zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Osborne and A. Rubinstein. A Course in Game Theory, MIT Press, 1994.Google Scholar
  17. 17.
    D. Lewis, Convention: A Philosophical Study, Harvard University Press, 1969.Google Scholar
  18. 18.
    J. Moore. Implementation in Environments with Complete Information, In J.J. Laffont, Advances in Economic Theory: Proceedings of the Congress of the Economiteric Society, Cambridge University Press, 1992.Google Scholar
  19. 19.
    D. Kozen. Results on the propositional μ-calculus, Proc 9th ICALP, Springer LNCS #140, 1982, pp. 348–359.Google Scholar
  20. 20.
    D. Kozen and R. Parikh, A decision procedure for the propositional μ-calculus, Proc. CMU Conf. on the Logic of Programs, Springer LNCS #164, pp. 313–325.Google Scholar
  21. 21.
    J. Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two Notions, Cornell University Press, 1962.Google Scholar
  22. 22.
    R. Hilpinen. Deontic Logic, in Blackwell Guide to Philosophical Logic, Ed. Lou Goble, Blackwell, 2001, pp. 159–182.Google Scholar
  23. 23.
    J. Horty. Agency and Deontic Logic, Oxford 2001.Google Scholar
  24. 24.
    C. A. R. Hoare. An axiomatic basis for computer programming, Comm. ACM 12, pp. 576–580, 583.Google Scholar
  25. 25.
    B. Kooi. Knowledge, chance and change Ph.D. thesis, 2003.Google Scholar
  26. 26.
    A. Lomuscio and M. Sergot. Deontic interpreted systems, Studia Logica, 75, 2003, pp. 63–92.zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    J.J. Meyer and W. van der Hoek. Epistemic Logic for Computer Science and Artificial Intelligence Cambridge Tracts in Theoretical Computer Science 41, Cambridge University Press, 1995.Google Scholar
  28. 28.
    L. Moss and R. Parikh. Topological Reasoning and the Logic of Knowledge, TARK IV, Ed. Y. Moses, Morgan Kaufmann, 1992.Google Scholar
  29. 29.
    E. Pacuit and R. Parikh. The Logic of Communication Graphs, Proc. DALT 2004, Joao Alexandre Leite, Andrea Omicini, Paolo Torroni, Pinar Yolum (Eds.), Revised Selected Papers, Springer LNCS #3476, 2005, pp. 256–269.Google Scholar
  30. 30.
    E. Pacuit, R. Parikh, and E. Cogan. The Logic of Knowledge Based Obligations, Presented at DALT 2004, forthcoming in Knowledge, Rationality and Action 2005.Google Scholar
  31. 31.
    R. Parikh Effectiveness, the Philosophical Forum XII, 1980, pp. 68–81.Google Scholar
  32. 32.
    R. Parikh. Social software, Synthese, pp. 187–211, September 2002.Google Scholar
  33. 33.
    R. Parikh. The Logic of Games and its Applications, Annals of Discrete Math., 24, 1985, pp. 111–140.zbMATHMathSciNetGoogle Scholar
  34. 34.
    R. Parikh and P. Krasucki. Communication, Consensus and Knowledge, J. Economic Theory, 52, 1990, pp. 178–189.zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    R. Parikh and R. Ramanujam. Distributed Processing and the Logic of Knowledge, in Logic of Programs, Springer LNCS #193, June 1985, pp. 256–268.Google Scholar
  36. 36.
    R. Parikh and R. Ramanujam. A Knowledge based Semantics of Messages, J. Logic, Language and Information, 12, 2003, pp. 453–467.zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    R. Parikh. Levels of Knowledge, Games, and Group Action, Research in Economics, vol 57, 2003, pp. 267–281.CrossRefGoogle Scholar
  38. 38.
    R. Parikh. Logical omniscience, in Logic and Computational Complexity Ed. Leivant, Springer LNCS #960, 1995, pp. 22–29.Google Scholar
  39. 39.
    M. Pauly. A Logical Framework for Coalitional Effectivity in Dynamic Procedures, in Bulletin of Economic Research, 53(4), pp. 305–324.Google Scholar
  40. 40.
    M. Pauly. Logic for Social Software, Ph.D. Thesis, University of Amsterdam. ILLC Dissertation Series 2001-10, ISBN: 90-6196-510-1.Google Scholar
  41. 41.
    V. Pratt. Semantical considerations on Floyd-Hoare logic, In Proc. 17th Symp. Found. Comput. Sci. pp. 109–121. IEEE.Google Scholar
  42. 42.
    A. M. Zanaboni. Reasoning about knowledge: Notes of Rohit Parikh’s lectures. Published in Italy: Cassa di Risparmio di Padova e Rovigo, June 1991. Based on lectures given at the 3rd International School for Computer Science Researchers, Acireale, June 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Eric Pacuit
    • 1
  • Rohit Parikh
    • 2
  1. 1.ILLCAmsterdamThe Netherlands
  2. 2.Brooklyn College and CUNY Graduate CenterNew YorkUSA

Personalised recommendations