The Multidisciplinary Patterns of Interaction from Sciences to Computer Science

  • Andrea Omicini
  • Alessandro Ricci
  • Mirko Viroli


Interaction is a fundamental dimension for modelling and engineering complex computational systems. More generally, interaction is a critical issue in the understanding of complex systems of any sort: as such, it has emerged in several well-established scientific areas other than computer science, like biology, physics, social and organizational sciences.

In this chapter, we take a multidisciplinary view of interaction by drawing parallels between researches outside and within computer science. We point out some of the basic patterns of interaction as they emerge from a number of heterogeneous research fields, and show how they can be brought to computer science and provide new insights on the issue of interaction in complex computational systems.


Multiagent System Activity Theory Human Society Turing Machine Computational System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Arbab. Reo: A channel-based coordination model for component composition. Mathematical Structures in Computer Science, 14:329–366, 2004.zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Bardram. Designing for the dynamics of cooperative work activities. In 1998 ACM Conference on Computer Supported Cooperative Work (CSCW’98), pages 89–98. ACM Press, 14–18Nov. 1998.Google Scholar
  3. 3.
    F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors. Methodologies and Software Engineering for Agent Systems: The Agent-Oriented Software Engineering Handbook. Kluwer Academic publishers, June 2004.Google Scholar
  4. 4.
    G. Boella and L. W. van der Torre. Attributing mental attitudes to normative systems. In J. S. Rosenschein, M. J. Wooldridge, T. Sandholm, and M. Yokoo, editors, 2nd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2003), pages 942–943. ACM Press, 14–18July 2003. Poster.Google Scholar
  5. 5.
    R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47(1–3):139–159, 1991.CrossRefGoogle Scholar
  6. 6.
    P. Ciancarini. Coordination models and languages as software integrators. ACM Computing Surveys, 28(2):300–302, June 1996.CrossRefGoogle Scholar
  7. 7.
    D. D. Corkill. Blackboard systems. Journal of AI Expert, 9(6):40–47, 1991.Google Scholar
  8. 8.
    C. Darwin. The Origin of Species. Murray, London, 6th edition, 1872.Google Scholar
  9. 9.
    R. Dawkins. The Selfish Gene. Oxford University Press, Oxford, UK, 1976.Google Scholar
  10. 10.
    G. Di Marzo Serugendo, A. Karageorgos, O. F. Rana, and F. Zambonelli, editors. Engineering Self-Organising Systems: Nature-Inspired Approaches to Software Engineering, volume 2977 of LNAI. Springer, May 2004.Google Scholar
  11. 11.
    J. Diamond. Guns, Germs, and Steel: The Fates of Human Societies. W.W. Norton & Company, March 1997.Google Scholar
  12. 12.
    Y. Engeström, K. Brown, L. C. Christopher, and J. Gregory. Coordination, cooperation, and communication in the courts: Expansive transitions in legal work. In M. Cole, Y. Engeström, and O. Vasquez, editors, Mind, Culture, and Activity, chapter 28. Cambridge University Press, Oct. 1997.Google Scholar
  13. 13.
    Y. Engeström, R. Miettinen, and R.-L. Punamaki, editors. Perspectives on Activity Theory. Cambridge University Press, 1999.Google Scholar
  14. 14.
    D. Gelernter. Generative communication in Linda. ACM Transactions on Programming Languages and Systems, 7(1):80–112, Jan. 1985.zbMATHCrossRefGoogle Scholar
  15. 15.
    D. Gelernter and N. Carriero. Coordination languages and their significance. Communications of the ACM, 35(2):97–107, Feb. 1992.CrossRefGoogle Scholar
  16. 16.
    D. Q. Goldin, S. A. Smolka, P. C. Attie, and E. L. Sonderegger. Turing machines, transition systems and interaction. Information and Computation, 194(2):101–128, Nov. 2004.zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    S. J. Gould. The Structure of Evolutionary Theory. The Belknap Press of Harvard University Press, Mar. 2002.Google Scholar
  18. 18.
    P.-P. Grassé. La reconstruction du nid et les coordinations inter-individuelles chez bellicositermes natalensis et cubitermes sp. la theorie de la stigmergie: essai d’interpretation des termites constructeurs. Insectes Sociaux, 6:41–83, 1959.CrossRefGoogle Scholar
  19. 19.
    B. R. Greene. The Elegant Universe. Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. Knopf Publishing Group, March 2000.Google Scholar
  20. 20.
    B. R. Greene. The Fabric of The Cosmos: Space, Time, and the Texture of Reality. Alfred A. Knopf, New York, NY, USA, Feb. 2004.Google Scholar
  21. 21.
    Hadeli, P. Valckenaers, C. Zamfirescu, H. Van Brussel, B. Saint Germain, T. Hoelvoet, and E. Steegmans. Self-organising in multi-agent coordination and control using stigmergy. In A. Karageorgos, O. F. Rana, and F. Zambonelli, editors. Engineering Self-Organising Systems: Nature-Inspired Approaches to Software Engineering, volume 2977 of LNAI. Springer, May 2004. Di Marzo Serugendo et al. [10], pages 105–123.Google Scholar
  22. 22.
    W. Heisenberg. Collected Works: Scientific Review Papers, Talks, and Books. Springer, 1984.Google Scholar
  23. 23.
    J. H. Holland. Emergence: From Chaos to Order. Basic Books, New York, NY, USA, 1999.Google Scholar
  24. 24.
    O. Holland and C. Melhuis. Stigmergy, self-organization, and sorting in collective robotics. Artificial Life, 5(2):173–202, 1999.CrossRefGoogle Scholar
  25. 25.
    D. L. Hull. Individuality and selection. Annual Review of Ecology and Systematics, 11:311–332, 1980.CrossRefGoogle Scholar
  26. 26.
    S. A. Kauffman. Investigations. Oxford University Press, March 2001.Google Scholar
  27. 27.
    D. Kirsh. Distributed cognition, coordination and environment design. In European Cognitive Science Society, pages 1–11, 1999.Google Scholar
  28. 28.
    H. Kitano. Foundations of Systems Biology. MIT Press, 2002.Google Scholar
  29. 29.
    A. N. Leontjev. Activity, Consciousness, and Personality. Prentice Hall, 1978.Google Scholar
  30. 30.
    M. Mamei and F. Zambonelli. Self-organization in multi-agents systems: A middelware approach. In A. Karageorgos, O. F. Rana, and F. Zambonelli, editors. Engineering Self-Organising Systems: Nature-Inspired Approaches to Software Engineering, volume 2977 of LNAI. Springer, May 2004. Di Marzo Serugendo et al. [10], pages 233–248.Google Scholar
  31. 31.
    R. Milner. Elements of interaction: Turing Award lecture. Communications of the ACM, 36(1):78–89, Jan. 1993.CrossRefGoogle Scholar
  32. 32.
    B. Nardi, editor. Context and Consciousness: Activity Theory and Human-Computer Interaction. MIT Press, 1996.Google Scholar
  33. 33.
    P. Noriega and C. Sierra. Electronic institutions: Future trends and challenges. In M. Klusch, S. Ossowski, and O. Shehory, editors, Cooperative Information Agents VI, volume 2446 of LNAI. Springer, 2002.Google Scholar
  34. 34.
    A. Omicini. SODA: Societies and infrastructures in the analysis and design of agent-based systems. In P. Ciancarini and M. J. Wooldridge, editors, Agent-Oriented Software Engineering, volume 1957 of LNCS, pages 185–193. Springer, 2001.Google Scholar
  35. 35.
    A. Omicini and S. Ossowski. Objective versus subjective coordination in the engineering of agent systems. In M. Klusch, S. Bergamaschi, P. Edwards, and P. Petta, editors, Intelligent Information Agents: An AgentLink Perspective, volume 2586 of LNAI: State-of-the-Art Survey, pages 179–202. Springer, 2003.Google Scholar
  36. 36.
    A. Omicini and A. Ricci. Reasoning about organisation: Shaping the infrastructure. AI*IA Notizie, XVI(2):7–16, June 2003.Google Scholar
  37. 37.
    A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and L. Tummolini. Coordination artifacts: Environment-based coordination for intelligent agents. In N. R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe, editors, 3rd international Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004), volume 1, pages 286–293, New York, NY, USA, 19–23July 2004. ACM.Google Scholar
  38. 38.
    A. Omicini and F. Zambonelli. Coordination for Internet application development. Autonomous Agents and Multi-Agent Systems, 2(3):251–269, Sept. 1999.CrossRefGoogle Scholar
  39. 39.
    A. Ricci, A. Omicini, and E. Denti. Virtual enterprises and workflow management as agent coordination issues. International Journal of Cooperative Information Systems, 11(3/4):355–379, Sept./Dec. 2002.CrossRefGoogle Scholar
  40. 40.
    A. Ricci, A. Omicini, and E. Denti. Activity Theory as a framework for MAS coordination. In P. Petta, R. Tolksdorf, and F. Zambonelli, editors, Engineering Societies in the Agents World III, volume 2577 of LNCS, pages 96–110. Springer-Verlag, Apr. 2003.Google Scholar
  41. 41.
    A. Ricci, A. Omicini, M. Viroli, L. Gardelli, and E. Oliva. Cognitive stigmergy: A framework based on agents and artifacts. In M.-P. Gleizes, G. A. Kaminka, A. Nowé, S. Ossowski, K. Tuyls, and K. Verbeeck, editors, 3rd European Workshop on Multi-Agent Systems (EUMAS 2005), pages 332–343, Brussels, Belgium, 7–8 Dec. 2005. Koninklijke Vlaamse Academie van Belie voor Wetenschappen en Kunsten.Google Scholar
  42. 42.
    A. Ricci, M. Viroli, and A. Omicini. Environment-based coordination through coordination artifacts. In H. V. D. Parunak, and F. Michel, editors. Environments for Multi-Agent Systems, volume 3374 of LNAI. Springer, Feb. 2005. 1st International Workshop (E4MAS 2004), New York, NY, USA, July 2004, Revised Selected Papers. Weyns et al. [52], pages 190–214. 1st International Workshop (E4MAS 2004), New York, NY, USA, July 2004, Revised Selected Papers.Google Scholar
  43. 43.
    M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik. Abstractions for software architecture and tools to support them. IEEE Transaction on Software Engineering, 21(4):314–335, 1995.CrossRefGoogle Scholar
  44. 44.
    H. A. Simon. The Sciences of the Artificial. The MIT Press, 3rd edition, Oct. 1996.Google Scholar
  45. 45.
    L. Stein. Interaction, computation, and education. In this volume.Google Scholar
  46. 46.
    T. Susi and T. Ziemke. Social cognition, artefacts, and stigmergy: A comparative analysis of theoretical frameworks for the understanding of artefact-mediated collaborative activity. Cognitive Systems Research, 2(4):273–290, Dec. 2001.CrossRefGoogle Scholar
  47. 47.
    W. W. Vasconcelos. Logic-based electronic institutions. In J. A. Leite, A. Omicini, L. Sterling, and P. Torroni, editors, Declarative Agent Languages and Technologies, volume 2990 of LNAI, pages 223–242. Springer, May 2004. 1st International Workshop (DALT 2003), Melbourne, Australia, 15July2003. Revised Selected and Invited Papers.Google Scholar
  48. 48.
    M. Viroli and A. Omicini. Coordination as a service: Ontological and formal foundation. Electronic Notes in Theoretical Computer Science, 68(3):457–482, Mar. 2003. 1st International Workshop “Foundations of Coordination Languages and Software Architecture” (FOCLASA 2002), Brno, Czech Republic, 24Aug.2002. Proceedings.CrossRefGoogle Scholar
  49. 49.
    L. S. Vygotskij. Mind and Society. Harvard University Press, 1978.Google Scholar
  50. 50.
    P. Wegner. Why interaction is more powerful than algorithms. Communications of the ACM, 40(5):80–91, May 1997.CrossRefGoogle Scholar
  51. 51.
    P. Wegner. Interactive foundations of computing. Theoretical Computer Science, 192(2):315–351, Feb. 1998.zbMATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    D. Weyns, H. V. D. Parunak, and F. Michel, editors. Environments for Multi-Agent Systems, volume 3374 of LNAI. Springer, Feb. 2005. 1st International Workshop (E4MAS 2004), New York, NY, USA, July 2004, Revised Selected Papers.Google Scholar
  53. 53.
    G. C. Williams. Adaptation and Natural Selection. Oxford University Press, Oxford, UK, 1966.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andrea Omicini
    • 1
  • Alessandro Ricci
    • 1
  • Mirko Viroli
    • 1
  1. 1.Alma Mater Studiorum—Università di Bologna a CesenaItaly

Personalised recommendations