Advertisement

On Neyman-Pearson Lemma for Crisp, Random and Fuzzy Hypotheses

  • Adel Mohammadpour
  • Ali Mohammad-Djafari
Part of the Advances in Soft Computing book series (AINSC, volume 37)

Abstract

We show that the best test for fuzzy hypotheses in the Bayesian framework is equivalent to Neyman-Pearson lemma in the classical statistics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B.F. Arnold: An approach to fuzzy hypothesis testing. Metrika 44 119–126 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    B.F. Arnold: Testing fuzzy hypotheses with crisp data. Fuzzy Sets and Systems 94 323–333 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    B.F. Arnold, O. Gerke: Testing fuzzy linear hypotheses in linear regression models. Metrika 57 81–95 (2003)CrossRefMathSciNetGoogle Scholar
  4. [4]
    H. Bandemer, W. Näther: Fuzzy data analysis. Kluwer Academic Publishers, Dordrecht, (1992)zbMATHGoogle Scholar
  5. [5]
    J. Berger, M. Delampady: Testing precise hypotheses. Statistical Science 2 317–352 (1987)zbMATHMathSciNetGoogle Scholar
  6. [6]
    A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin: Bayesian Data Analysis. 2nd ed. Chapman & Hall/CRC, New York (2004)zbMATHGoogle Scholar
  7. [7]
    G.E. Box, G.C. Tiao: Bayesian inference in statistical analysis, Addison- Wesley, Reading, Mass (1973)zbMATHGoogle Scholar
  8. [8]
    M.R. Casals: Bayesian testing of fuzzy parametric hypotheses from fuzzy information, RAIRO, Operations Research 27 189–199 (1993)zbMATHMathSciNetGoogle Scholar
  9. [9]
    M.R. Casals, M.A. Gil: A note on the operativness of Neyman-Pearson tests with fuzzy information. Fuzzy Sets and Systems 30 215–220 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    M.R. Casals, P. Gil: Bayes testing of fuzzy hypotheses based on fuzzy information. (Spanish) Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid 84 441–451 (1990)zbMATHMathSciNetGoogle Scholar
  11. [11]
    M.R. Casals, M.A. Gil, P. Gil: On the use of Zadeh’s probabilistic definition for testing statistical hypotheses from fuzzy information. Fuzzy Sets and Systems 20 175–190 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    M.R. Casals, M.A. Gil, P. Gil: The fuzzy decision problem: an approach to the problem of testing statistical hypotheses with fuzzy information, Eur. J. Oper. Res. 27 371–382 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    D.R. Cox, D.V. Hinkley: Theoretical statistics. Wiley, New York, (1974)zbMATHGoogle Scholar
  14. [14]
    M. Delgado, J.L. Verdegay, M.A. Vila: Testing fuzzy hypotheses, a Bayesian approach. In M.M. Gupta, editor, Approximate reasoning in expert systems, North-Holland, Amsterdam, 307–316 (1985)Google Scholar
  15. [15]
    P. Filzmoser, R. Viertl: Testing hypotheses with fuzzy data: the fuzzy p-value. Metrika, 59 21–29 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    R.A. Fisher: Statistical methods for research workers: Oliver and Boyd, London (1925)Google Scholar
  17. [17]
    S. Frühwirth-Schnatter: On fuzzy Bayesian inference, Fuzzy Sets and Systems 60 41–58 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    M.A. Gil, M.R. Casals, An operative extension of the likelihood ratio test from fuzzy data. Statist. Hefte 29 191–203 (1988)zbMATHMathSciNetGoogle Scholar
  19. [19]
    P. Grzegorzewski, Testing fuzzy hypotheses with vague data. Statistical modeling, analysis and management of fuzzy data, Stud. Fuzziness Soft Comput., Physica, Heidelberg 87 213–225 (2002)MathSciNetGoogle Scholar
  20. [20]
    L. Haekwan, H. Tanaka: Fuzzy approximations with non-symmetric fuzzy parameters in fuzzy regression analysis. J. Oper. Res. Soc. Japan 42 98–112 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    M.-K. Kang, S.-W Jang, O.-J. Kwon: Testing statistical hypotheses for fuzzy data with agreement index, Far East J. Theor. Stat. 5 343–352 (2001)zbMATHMathSciNetGoogle Scholar
  22. [22]
    E.L. Lehmann: Testing statistical hypotheses. Wiley, New York (1986)zbMATHGoogle Scholar
  23. [23]
    J. Neyman, E.S. Pearson: On the problem of the most efficient tests of statistical hypotheses. Philosophical Transactions of the Royal Society (A), 231 289–337 (1933)CrossRefGoogle Scholar
  24. [24]
    J.J. Saade, Extension of fuzzy hypothesis testing with hybrid data. Fuzzy Sets and Systems 63 57–71 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    J.J. Saade, H. Schwarzlander: Fuzzy hypothesis testing with hybrid data. Fuzzy Sets and Systems 35 197–212 (1990)zbMATHCrossRefGoogle Scholar
  26. [26]
    S.M. Taheri, J. Behboodian: Neyman-Pearson lemma for fuzzy hypotheses testing. Metrika 49, 3–17 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    S.M. Taheri, J. Behboodian, A Bayesian approach to fuzzy hypotheses testing, Fuzzy Sets and Systems 123 39–48 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    S.M. Taheri, J. Behboodian: Fuzzy hypotheses testing with fuzzy data: a Bayesian approach. In R.P. Nikhil and M. Sugeno, editors, Advances in Soft Computing, AFSS 2002, Springer, Berlin 527–533 (2002)Google Scholar
  29. [29]
    N. Watanabe, T. Imaizumi: A fuzzy statistical test of fuzzy hypotheses, Fuzzy Sets and Systems 53 167–178 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    A. Zellner: Comment on “Testing precise hypotheses” by Berger and Delampady. Statistical Science 2, 339–341 (1987)Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Adel Mohammadpour
    • 1
  • Ali Mohammad-Djafari
    • 1
  1. 1.Dept. of Stat., Faculty of Math. and Computer SciencesAmirkabir Univ. of Thec. (Tehran Polytechnic) and Statistical Research CenterFRANCE

Personalised recommendations