On Neyman-Pearson Lemma for Crisp, Random and Fuzzy Hypotheses

  • Adel Mohammadpour
  • Ali Mohammad-Djafari
Part of the Advances in Soft Computing book series (AINSC, volume 37)


We show that the best test for fuzzy hypotheses in the Bayesian framework is equivalent to Neyman-Pearson lemma in the classical statistics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B.F. Arnold: An approach to fuzzy hypothesis testing. Metrika 44 119–126 (1996)MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    B.F. Arnold: Testing fuzzy hypotheses with crisp data. Fuzzy Sets and Systems 94 323–333 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    B.F. Arnold, O. Gerke: Testing fuzzy linear hypotheses in linear regression models. Metrika 57 81–95 (2003)CrossRefMathSciNetGoogle Scholar
  4. [4]
    H. Bandemer, W. Näther: Fuzzy data analysis. Kluwer Academic Publishers, Dordrecht, (1992)MATHGoogle Scholar
  5. [5]
    J. Berger, M. Delampady: Testing precise hypotheses. Statistical Science 2 317–352 (1987)MATHMathSciNetGoogle Scholar
  6. [6]
    A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin: Bayesian Data Analysis. 2nd ed. Chapman & Hall/CRC, New York (2004)MATHGoogle Scholar
  7. [7]
    G.E. Box, G.C. Tiao: Bayesian inference in statistical analysis, Addison- Wesley, Reading, Mass (1973)MATHGoogle Scholar
  8. [8]
    M.R. Casals: Bayesian testing of fuzzy parametric hypotheses from fuzzy information, RAIRO, Operations Research 27 189–199 (1993)MATHMathSciNetGoogle Scholar
  9. [9]
    M.R. Casals, M.A. Gil: A note on the operativness of Neyman-Pearson tests with fuzzy information. Fuzzy Sets and Systems 30 215–220 (1989)MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    M.R. Casals, P. Gil: Bayes testing of fuzzy hypotheses based on fuzzy information. (Spanish) Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid 84 441–451 (1990)MATHMathSciNetGoogle Scholar
  11. [11]
    M.R. Casals, M.A. Gil, P. Gil: On the use of Zadeh’s probabilistic definition for testing statistical hypotheses from fuzzy information. Fuzzy Sets and Systems 20 175–190 (1986)MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    M.R. Casals, M.A. Gil, P. Gil: The fuzzy decision problem: an approach to the problem of testing statistical hypotheses with fuzzy information, Eur. J. Oper. Res. 27 371–382 (1986)MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    D.R. Cox, D.V. Hinkley: Theoretical statistics. Wiley, New York, (1974)MATHGoogle Scholar
  14. [14]
    M. Delgado, J.L. Verdegay, M.A. Vila: Testing fuzzy hypotheses, a Bayesian approach. In M.M. Gupta, editor, Approximate reasoning in expert systems, North-Holland, Amsterdam, 307–316 (1985)Google Scholar
  15. [15]
    P. Filzmoser, R. Viertl: Testing hypotheses with fuzzy data: the fuzzy p-value. Metrika, 59 21–29 (2004)MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    R.A. Fisher: Statistical methods for research workers: Oliver and Boyd, London (1925)Google Scholar
  17. [17]
    S. Frühwirth-Schnatter: On fuzzy Bayesian inference, Fuzzy Sets and Systems 60 41–58 (1993)MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    M.A. Gil, M.R. Casals, An operative extension of the likelihood ratio test from fuzzy data. Statist. Hefte 29 191–203 (1988)MATHMathSciNetGoogle Scholar
  19. [19]
    P. Grzegorzewski, Testing fuzzy hypotheses with vague data. Statistical modeling, analysis and management of fuzzy data, Stud. Fuzziness Soft Comput., Physica, Heidelberg 87 213–225 (2002)MathSciNetGoogle Scholar
  20. [20]
    L. Haekwan, H. Tanaka: Fuzzy approximations with non-symmetric fuzzy parameters in fuzzy regression analysis. J. Oper. Res. Soc. Japan 42 98–112 (1999)MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    M.-K. Kang, S.-W Jang, O.-J. Kwon: Testing statistical hypotheses for fuzzy data with agreement index, Far East J. Theor. Stat. 5 343–352 (2001)MATHMathSciNetGoogle Scholar
  22. [22]
    E.L. Lehmann: Testing statistical hypotheses. Wiley, New York (1986)MATHGoogle Scholar
  23. [23]
    J. Neyman, E.S. Pearson: On the problem of the most efficient tests of statistical hypotheses. Philosophical Transactions of the Royal Society (A), 231 289–337 (1933)CrossRefGoogle Scholar
  24. [24]
    J.J. Saade, Extension of fuzzy hypothesis testing with hybrid data. Fuzzy Sets and Systems 63 57–71 (1994)MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    J.J. Saade, H. Schwarzlander: Fuzzy hypothesis testing with hybrid data. Fuzzy Sets and Systems 35 197–212 (1990)MATHCrossRefGoogle Scholar
  26. [26]
    S.M. Taheri, J. Behboodian: Neyman-Pearson lemma for fuzzy hypotheses testing. Metrika 49, 3–17 (1999)MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    S.M. Taheri, J. Behboodian, A Bayesian approach to fuzzy hypotheses testing, Fuzzy Sets and Systems 123 39–48 (2001)MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    S.M. Taheri, J. Behboodian: Fuzzy hypotheses testing with fuzzy data: a Bayesian approach. In R.P. Nikhil and M. Sugeno, editors, Advances in Soft Computing, AFSS 2002, Springer, Berlin 527–533 (2002)Google Scholar
  29. [29]
    N. Watanabe, T. Imaizumi: A fuzzy statistical test of fuzzy hypotheses, Fuzzy Sets and Systems 53 167–178 (1993)MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    A. Zellner: Comment on “Testing precise hypotheses” by Berger and Delampady. Statistical Science 2, 339–341 (1987)Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Adel Mohammadpour
    • 1
  • Ali Mohammad-Djafari
    • 1
  1. 1.Dept. of Stat., Faculty of Math. and Computer SciencesAmirkabir Univ. of Thec. (Tehran Polytechnic) and Statistical Research CenterFRANCE

Personalised recommendations