Advertisement

Overview of the Standard Model Extension: Implications and Phenomenology of Lorentz Violation

  • R. Bluhm
Part of the Lecture Notes in Physics book series (LNP, volume 702)

Abstract

The Standard Model Extension (SME) provides the most general observerindependent field theoretical framework for investigations of Lorentz violation. The SME lagrangian by definition contains all Lorentz-violating interaction terms that can be written as observer scalars and that involve particle fields in the Standard Model and gravitational fields in a generalized theory of gravity. This includes all possible terms that could arise from a process of spontaneous Lorentz violation in the context of a more fundamental theory, as well as terms that explicitly break Lorentz symmetry. An overview of the SME is presented, including its motivations and construction. Some of the theoretical issues arising in the case of spontaneous Lorentz violation are discussed, including the question of what happens to the Nambu-Goldstone modes when Lorentz symmetry is spontaneously violated and whether a Higgs mechanism can occur. A minimal version of the SME in flat Minkowski spacetime that maintains gauge invariance and power-counting renormalizability is used to search for leading-order signals of Lorentz violation. Recent Lorentz tests in QED systems are examined, including experiments with photons, particle and atomic experiments, proposed experiments in space, and experiments with a spin-polarized torsion pendulum.

Keywords

Spin Connection Higgs Mechanism Lorentz Symmetry Lorentz Violation Standard Model Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Einstein, The Principle of Relativity, (Dover, New York, 1952).zbMATHGoogle Scholar
  2. 2.
    R. Utiyama, Phys. Rev. 101, 1597 (1956); T.W.B. Kibble, J. Math. Phys. 2, 212 (1961).zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    For reviews of gravitation in Riemann-Cartan spacetimes see, for example, F.W. Hehl et al., Rev. Mod. Phys. 48, 393 (1976); I.L. Shapiro, Phys. Rep. 357, 113 (2002).MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    V.A. Kostelecký and S. Samuel, Phys. Rev. D 39, 683 (1989); V.A. Kostelecký and R. Potting, Nucl. Phys. B 359, 545 (1991).CrossRefADSGoogle Scholar
  5. 5.
    V.A. Kostelecký and S. Samuel, Phys. Rev. Lett. 66, 1811 (1991); V.A. Kostelecký and R. Potting, Phys. Lett. B 381, 89 (1996); Phys. Rev. D 63, 046007 (2001); V.A. Kostelecký, M. Perry, and R. Potting, Phys. Rev. Lett. 84, 4541 (2000).CrossRefADSGoogle Scholar
  6. 6.
    See, for example, R. Gambini and J. Pullin, Phys. Rev. D 59, 124021 (1999); J. Alfaro, H.A. Morales-Técotl, and L.F. Urrutia, Phys. Rev. D 66, 124006 (2002); D. Sudarsky, L. Urrutia, and H. Vucetich, Phys. Rev. Lett. 89, 231301 (2002); Phys. Rev. D 68, 024010 (2003); G. Amelino-Camelia, Mod. Phys. Lett. A 17, 899 (2002); Y.J. Ng, Mod. Phys. Lett. A18, 1073 (2003); R. Myers and M. Pospelov, Phys. Rev. Lett. 90, 211601 (2003); N.E. Mavromatos, Nucl. Instrum. Meth. B 214, 1 (2004).MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    V.A. Kostelecký and R. Potting, Phys. Rev. D 51, 3923 (1995).CrossRefADSGoogle Scholar
  8. 8.
    D. Colladay and V.A. Kostelecký, Phys. Rev. D 55, 6760 (1997); Phys. Rev. D 58, 116002 (1998).CrossRefADSGoogle Scholar
  9. 9.
    V.A. Kostelecký, Phys. Rev. D 69, 105009 (2004).CrossRefADSGoogle Scholar
  10. 10.
    R. Bluhm and V.A. Kostelecký, Phys. Rev. D 71, 065008 (2005).CrossRefADSGoogle Scholar
  11. 11.
    V.A. Kostelecký and S. Samuel, Phys. Rev. Lett. 63, 224 (1989); Phys. Rev. D 40, 1886 (1989).CrossRefADSGoogle Scholar
  12. 12.
    For recent reviews of various experimental and theoretical approaches to Lorentz and CPT violation see, for example, V.A. Kostelecký, ed., CPT and Lorentz Symmetry III (World Scientific, Singapore, 2005) and earlier volumes in this series: CPT and Lorentz Symmetry II,World Scientific, Singapore, 2002; CPT and Lorentz Symmetry, World Scientific, Singapore, 1999.Google Scholar
  13. 13.
    C. Lämmerzahl, C.W.F. Everitt, F.W. Hehl, eds., Gyros, Clocks, Interferometers: Testing Relativistic Gravity in Space (Springer, Berlin, 2001)zbMATHGoogle Scholar
  14. 14.
    Examples of some recent review articles are C. Lämmerzahl, A. Macias, and H. Müller, gr-qc/0501048; G. Amelino-Camelia, C. Lämmerzahl, A. Macias, and H. Müller, gr-qc/0501053; D. Mattingly, gr-qc/0502097; C. W. Will, gr-qc/0504085; gr-qc/0504086; T. Jacobson, S. Liberati, and D. Mattingly, astro-ph/0505267.Google Scholar
  15. 15.
    A. Connes, M. Douglas, and A. Schwartz, J. High Energy Phys. 02, 003 (1998).CrossRefADSGoogle Scholar
  16. 16.
    See, for example, I. Mocioiu, M. Pospelov, and R. Roiban, Phys. Lett. B 489, 390 (2000); S.M. Carroll et al., Phys. Rev. Lett. 87, 141601 (2001); Z. Guralnik, R. Jackiw, S.Y. Pi, and A.P. Polychronakos, Phys. Lett. B 517, 450 (2001); C.E. Carlson, C.D. Carone, and R.F. Lebed, Phys. Lett. B 518, 201 (2001); A. Anisimov, T. Banks, M. Dine, and M. Graesser, Phys. Rev. D 65, 085032 (2002).zbMATHMathSciNetCrossRefADSGoogle Scholar
  17. 17.
    S. Coleman and S.L. Glashow, Phys. Rev. D 59, 116008 (1999).CrossRefADSGoogle Scholar
  18. 18.
    R.C. Myers and M. Pospelov, Phys. Rev. Lett. 90, 211601 (2003).MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    T. Jacobson and D. Mattingly, Phys. Rev. D 70, 024003 (2004).CrossRefADSGoogle Scholar
  20. 20.
    A.P. Lightman and D.L. Lee, Phys. Rev. D 8, 364 (1973).CrossRefADSGoogle Scholar
  21. 21.
    H.P. Robertson, Rev. Mod. Phys. 21, 378 (1949); R. Mansouri and R.U. Sexl, Gen. Rel. Grav. 8, 497 (1977).zbMATHCrossRefADSGoogle Scholar
  22. 22.
    C.N. Will, Theory and experimentation in Gravitational Physics (Cambridge University Press, Cambridge, England, 1993).Google Scholar
  23. 23.
    J. Schwinger, Phys. Rev. 82 (1951) 914; J.S. Bell, Birmingham University thesis (1954); Proc. Roy. Soc. (London) A 231 (1955) 479; G. Lüders, Det. Kong. Danske Videnskabernes Selskab Mat.fysiske Meddelelser 28, No. 5 (1954); Ann. Phys. (N.Y.) 2 (1957) 1; W. Pauli, in W. Pauli, ed., Neils Bohr and the Development of Physics, McGraw-Hill, New York, 1955, p. 30.zbMATHMathSciNetCrossRefADSGoogle Scholar
  24. 24.
    O.W. Greenberg, Phys. Rev. Lett. 89, 231602 (2002); Phys. Lett. B 567, 179 (2003).CrossRefADSGoogle Scholar
  25. 25.
    V.A. Kostelecký and R. Lehnert, Phys. Rev. D 63, 065008 (2001).MathSciNetCrossRefADSGoogle Scholar
  26. 26.
    D. Colladay and P. McDonald, J. Math. Phys. 43, 3554 (2002).zbMATHMathSciNetCrossRefADSGoogle Scholar
  27. 27.
    M.S. Berger and V.A. Kostelecký, Phys. Rev. D 65, 091701(R) (2002).ADSGoogle Scholar
  28. 28.
    V.A. Kostelecký, C.D. Lane, and A.G.M. Pickering, Phys. Rev. D 65, 056006 (2002);CrossRefADSGoogle Scholar
  29. 29.
    R. Jackiw and V.A. Kostelecký, Phys. Rev. Lett. 82, 3572 (1999); M. Pérez- Victoria, JHEP 0104, 032 (2001).CrossRefADSGoogle Scholar
  30. 30.
    V.A. Kostelecký, R. Lehnert, and M. Perry, Phys. Rev. D 68, 123511 (2003).MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    Y. Nambu, Phys. Rev. Lett. 4, 380 (1960); J. Goldstone, Nuov. Cim. 19, 154 (1961); J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962).CrossRefADSGoogle Scholar
  32. 32.
    F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964); P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964); G.S. Guralnik, C.R. Hagen, and T.W.B. Kibble, Phys. Rev. Lett. 13, 585 (1964).MathSciNetCrossRefADSGoogle Scholar
  33. 33.
    See, for example, H.B. Nielsen and S. Chadha, Nucl. Phys. B 105, 445 (1976); I. Low and A.V. Manohar, Phys. Rev. Lett. 88, 101602 (2002); Y. Nambu, in CPT and Lorentz Symmetry III, [12].CrossRefADSGoogle Scholar
  34. 34.
    T. Jacobson and D. Mattingly, Phys. Rev. D 64, 024028 (2001); P. Kraus and E.T. Tomboulis, Phys. Rev. D 66, 045015 (2002); J.W. Moffat, Intl. J. Mod. Phys. D 2, 351 (1993); Found. Phys. 23 411 (1993); Intl. J. Mod. Phys. D 12, 1279 (2003); C. Eling and T. Jacobson, Phys. Rev. D 69, 064005 (2004); A. Jenkins, Phys. Rev. D 69, 105007 (2004); S.M. Carroll and E.A. Lim, Phys. Rev. D 70, 123525 (2004); E.A. Lim, Phys. Rev. D 71, 063504 (2005); B.M. Gripaios, JHEP 0410, 069 (2004); J.L. Chkareuli, C.D. Froggatt, R.N. Mohapatra, and H.B. Nielsen, hepth/ 0412225; M.L. Graesser, A. Jenkins, M.B. Wise, Phys. Lett. B B 613, 5 (2005); O. Bertolami and J. Paramos, hep-th/0504215.MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    N. Arkani-Hamed, H.-C. Cheng, M. Luty, and J. Thaler, JHEP 0405, 074 (2004).CrossRefADSGoogle Scholar
  36. 36.
    P.A.M. Dirac, Proc. R. Soc. Lon. A209, 291, (1951); W. Heisenberg, Rev. Mod. Phys. 29, 269 (1957); P.G.O. Freund, Acta Phys. Austriaca 14, 445 (1961); J.D. Bjorken, Ann. Phys. 24, 174 (1963).MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    Y. Nambu, Prog. Theor. Phys. Suppl. Extra 190 (1968).Google Scholar
  38. 38.
    H. van Dam and M. Veltman, Nucl. Phys. B 22, 397 (1970); V.I. Zakharov, JEPT Lett. 12, 312 (1970). A recent discussion of the discontinuity in a non-Minkowski background is F.A. Dilkes, M.J. Duff, J.T. Liu, and H. Sati, Phys. Rev. Lett. 87, 041301 (2001).CrossRefADSGoogle Scholar
  39. 39.
    E. Sezgin and P. van Nieuwenhuizen, Phys. Rev. D 21, 3269 (1980).MathSciNetCrossRefADSGoogle Scholar
  40. 40.
    K. Fukuma, Prog. Theor. Phys. 107, 191 (2002).zbMATHMathSciNetCrossRefADSGoogle Scholar
  41. 41.
    S.M. Carroll, G.B. Field, and R. Jackiw, Phys. Rev. D 41, 1231 (1990); M.P. Haugan and T.F. Kauffmann, Phys. Rev. D 52, 3168 (1995).CrossRefADSGoogle Scholar
  42. 42.
    J. Lipa et al., Phys. Rev. Lett. 90, 060403 (2003); H. Müller et al., Phys. Rev. Lett. 91, 020401 (2003); P. Wolf et al., Gen. Rel. Grav. 36, 2351 (2004); Phys. Rev. D 70, 051902 (2004).CrossRefADSGoogle Scholar
  43. 43.
    M.E. Tobar et al., Phys. Rev. D 71, 025004 (2005).CrossRefADSGoogle Scholar
  44. 44.
    P. Antonini et al., gr-qc/0504109.Google Scholar
  45. 45.
    V.A. Kostelecký and M. Mewes, Phys. Rev. Lett. 87, 251304 (2001); Phys. Rev. D 66, 056005 (2002).CrossRefADSGoogle Scholar
  46. 46.
    C. Adam and F.R. Klinkhamer, Nucl. Phys. B 657, 214 (2003); H. Müller et al., Phys. Rev. D 67, 056006 (2003); T. Jacobson, S. Liberati, and D. Mattingly, Phys. Rev. D 67, 124011 (2003); V.A. Kostelecký and A.G.M. Pickering, Phys. Rev. Lett. 91, 031801 (2003); R. Lehnert, Phys. Rev. D 68, 085003 (2003); G.M. Shore, Contemp. Phys. 44, 503 2003; B. Altschul, Phys. Rev. D 69, 125009 (2004); Phys. Rev. D 70, 101701 (2004); hep-th/0402036; T. Jacobson, S. Liberati, D. Mattingly, and F. Stecker, Phys. Rev. Lett. 93, 021101 (2004); R. Lehnert and R. Potting, Phys. Rev. Lett. 93, 110402 (2004); hep-ph/0408285; F.R. Klinkhamer and C. Rupp, Phys. Rev. D 70, 045020 (2004); Q. Bailey and V.A. Kostelecký, Phys. Rev. D 70, 076006 (2004); C. Lämmerzahl, A. Macias, and H. Müller, Phys. Rev. D, in press; C. Lämmerzahl and F.W. Hehl, Phys. Rev. D 70, 105022 (2004); H. Belich, T. Costa-Soares, M.M. Ferreira, and J.A. Helayel-Neto, hep-th/0411151; C. Lane, hep-ph/0505130.CrossRefADSGoogle Scholar
  47. 47.
    H. Dehmelt et al., Phys. Rev. Lett. 83, 4694 (1999).CrossRefADSGoogle Scholar
  48. 48.
    R. Mittleman et al., Phys. Rev. Lett. 83, 2116 (1999).CrossRefADSGoogle Scholar
  49. 49.
    R. Bluhm, V.A. Kostelecký, and N. Russell, Phys. Rev. Lett. 79, 1432 (1997); Phys. Rev. D 57, 3932 (1998).CrossRefADSGoogle Scholar
  50. 50.
    R. Bluhm, V.A. Kostelecký, and N. Russell, Phys. Rev. Lett. 82, 2254 (1999).CrossRefADSGoogle Scholar
  51. 51.
    D. Colladay and V.A. Kostelecký, Phys. Lett. B 511, 209 (2001); B. Altschul, Phys. Rev. D 70, 056005 (2004); G. Shore, hep-th/0409125.CrossRefADSGoogle Scholar
  52. 52.
    B. Heckel, in CPT and Lorentz Symmetry III, [12]; L.-S. Hou, W.-T. Ni, and Y.- C.M. Li, Phys. Rev. Lett. 90, 201101 (2003); R. Bluhm and V.A. Kostelecký, Phys. Rev. Lett. 84, 1381 (2000).Google Scholar
  53. 53.
    H. Müller, S. Herrmann, A. Saenz, A. Peters, and C. Lämmerzahl, Phys. Rev. D 68, 116006 (2003); Phys. Rev. D 70, 076004 (2004).CrossRefADSGoogle Scholar
  54. 54.
    V.W. Hughes, H.G. Robinson, and V. Beltran-Lopez, Phys. Rev. Lett. 4 (1960) 342; R.W.P. Drever, Philos. Mag. 6 (1961) 683; J.D. Prestage et al., Phys. Rev. Lett. 54 (1985) 2387; S.K. Lamoreaux et al., Phys. Rev. A 39 (1989) 1082; T.E. Chupp et al., Phys. Rev. Lett. 63 (1989) 1541; C.J. Berglund et al., Phys. Rev. Lett. 75 (1995) 1879; D. Bear et al., Phys. Rev. Lett. 85, 5038 (2000);CrossRefADSGoogle Scholar
  55. 55.
    D.F. Phillips et al., Phys. Rev. D 63, 111101 (2001); M.A. Humphrey et al., Phys. Rev. A 68, 063807 (2003); Phys. Rev. A 62, 063405 (2000).CrossRefADSGoogle Scholar
  56. 56.
    F. Canè et al., Phys. Rev. Lett. 93, 230801 (2004).CrossRefADSGoogle Scholar
  57. 57.
    V.A. Kostelecký and C.D. Lane, Phys. Rev. D 60, 116010 (1999); J. Math. Phys. 40, 6245 (1999).CrossRefADSGoogle Scholar
  58. 58.
    R. Bluhm et al., Phys. Rev. Lett. 88, 090801 (2002); Phys. Rev. D 68, 125008 (2003).CrossRefADSGoogle Scholar
  59. 59.
    G. Gabrielse et al., Phys. Rev. Lett. 82 (1999) 3198.CrossRefADSGoogle Scholar
  60. 60.
    KTeV Collaboration, H. Nguyen, in CPT and Lorentz Symmetry II, [12]; OPAL Collaboration, R. Ackerstaff et al., Z. Phys. C 76, 401 (1997); DELPHI Collaboration, M. Feindt et al., preprint DELPHI 97–98 CONF 80 (1997); BELLE Collaboration, K. Abe et al., Phys. Rev. Lett. 86, 3228 (2001); BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 92, 142002 (2004); FOCUS Collaboration, J.M. Link et al., Phys. Lett. B 556, 7 (2003).Google Scholar
  61. 61.
    V.A. Kostelecký, Phys. Rev. Lett. 80, 1818 (1998); Phys. Rev. D 61, 016002 (2000); Phys. Rev. D 64, 076001 (2001).CrossRefADSGoogle Scholar
  62. 62.
    V.W. Hughes et al., Phys. Rev. Lett. 87, 111804 (2001).CrossRefADSGoogle Scholar
  63. 63.
    H.N. Brown et al., Phys. Rev. Lett. 86, 2227 (2001).CrossRefADSGoogle Scholar
  64. 64.
    R. Bluhm, V.A. Kostelecký and C.D. Lane, Phys. Rev. Lett. 84, 1098 (2000).CrossRefADSGoogle Scholar
  65. 65.
    Recent experimental studies of Lorentz and CPT violation with neutrinos are summarized in papers by M.D. Messier (SK); T. Katori and R. Tayloe (LSND); and B.J. Rebel and S.F. Mufson (MINOS); all in CPT and Lorentz Symmetry III, [12].Google Scholar
  66. 66.
    V.A. Kostelecký and M. Mewes, Phys. Rev. D 69, 016005 (2004); Phys. Rev. D 70, 031902(R) (2004); Phys. Rev. D 70, 076002 (2004).CrossRefADSGoogle Scholar
  67. 67.
    V. Barger, S. Pakvasa, T. Weiler, and K. Whisnant, Phys. Rev. Lett. 85, 5055 (2000); J.N. Bahcall, V. Barger, and D. Marfatia, Phys. Lett. B 534, 114 (2002); I. Mocioiu and M. Pospelov, Phys. Lett. B 534, 114 (2002); A. de Gouvêa, Phys. Rev. D 66, 076005 (2002); G. Lambiase, Phys. Lett. B 560, 1 (2003); S. Choubey and S.F. King, Phys. Lett. B 586, 353 (2004); A. Datta et al., Phys. Lett. B 597, 356 (2004).CrossRefADSGoogle Scholar
  68. 68.
    D.L. Anderson, M. Sher, and I. Turan, Phys. Rev. D 70, 016001 (2004); E.O. Iltan, Mod. Phys. Lett. A 19, 327 (2004).CrossRefADSGoogle Scholar
  69. 69.
    L. Lavoura, Ann. Phys. 207, 428 (1991).CrossRefADSGoogle Scholar
  70. 70.
    KTeV Collaboration, Y.B. Hsiung et al., Nucl. Phys. Proc. Suppl. 86, 312 (2000); B. Winstein, in CPT and Lorentz Symmetry II, [12].CrossRefADSGoogle Scholar
  71. 71.
    Additional terms that are forbidden by the requirements of gauge invariance and renormalizability in the minimal SME can arise effectively in a QED extension due to strong binding in a nucleus. These coefficients are labeled as eμ, fμ, and gγμv. The are included in the general investigations described in [57]. However, for simplicity, they are ignored here.Google Scholar
  72. 72.
    B. Heckel, in CPT and Lorentz Symmetry III, [12].Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • R. Bluhm
    • 1
  1. 1.Colby CollegeWatervilleUSA

Personalised recommendations