Advertisement

Foundations of Special Relativity Theory

  • J. Ehlers
Part of the Lecture Notes in Physics book series (LNP, volume 702)

Abstract

Any physical theory is based partly on a spacetime structure, which is needed to locate events (= spacetime points) and to provide a domain of definition for variables describing particles and fields.

Keywords

Light Cone Inertial Frame Free Particle Minkowski Spacetime Spacetime Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Alväger, F.J.M. Farley, J. Kjellmann, and I. Wallin: Test of the second postulate of Special Relativity in the GeV region, Phys. Lett. 12, 260 (1964).CrossRefADSGoogle Scholar
  2. 2.
    K. Brecher: Is the speed of light independent of the velocity of the source?, Phys. Rev. Lett. 39, 1051 (1977).CrossRefADSGoogle Scholar
  3. 3.
    H.P. Robertson: Postulate versus observation in the Special Theory of Relativity, Rev. Mod. Phys. 21, 378 (1949).zbMATHCrossRefADSGoogle Scholar
  4. 4.
    A.A. Michelson and E.W. Morley: On the relative motion of the Earth and the luminiferous ether, Am. J. Sci. 34, 333 (1887).Google Scholar
  5. 5.
    R.J. Kennedy and E.M. Thorndike: Experimental establishment of the relativity of time, Phys. Rev. 42, 400 (1932).zbMATHCrossRefADSGoogle Scholar
  6. 6.
    H.E. Ives and G.R. Stilwell: An experimental study of the rate of a moving clock, J. Opt. Soc. Am. 28, 215 (1938).CrossRefADSGoogle Scholar
  7. 7.
    R.V. Pound and G.A. Rebka, G.A.: Apparent weight of Photons, Phys. Rev. Lett. 4, 337 (1960).Google Scholar
  8. 8.
    R.V. Pound and J.L. Snider: Effect of gravity on gamma radiation, Phys. Rev. 140, B788 (1965).CrossRefADSGoogle Scholar
  9. 9.
    R.F. Marzke, see M. and Wheeler, ch. 3 in Gravitation and Relativity, H.–G. Chin et al (eds.), Benjamin Inc., N.Y. 1964, pp. 50–52.Google Scholar
  10. 10.
    H.-J. Borchers and G.C. Hegerfeld, Commun. Math. Phys. 28, 259 (1972).zbMATHCrossRefADSGoogle Scholar
  11. 11.
    A.A. Robb: A Geometry of Time and Space, Cambridge 1914, later editions 1921, 1936 ibid.Google Scholar
  12. 12.
    C. Caratheodory, Zur Axiomatik der speziellen Relativitätstheorie, Sitzungsber. Preuss. Akad. Wissensch., 1924, S. 12Google Scholar
  13. 13.
    H. Reichenbach, Philosophie der Raum–Zeit–Lehre, 1928 (English translation: The philosophy of space and time, Dover Publications, New York, 1958).Google Scholar
  14. 14.
    B. Mundy, The physical content of Minkowski geometry, British Journal of Philosophy of Science 37, 25 (1986); Optical Axiomatization of Minkowski Space–Time Geometry, Philosophy of Science 53, 1 (1986).zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Weyl, Kap II. u. Anhang aus der Vorlesung “Axiomatik”, Göttingen 1930/31.Google Scholar
  16. 16.
    J.W. Schutz, Independent Axioms for Minkowski Space-Time, Pitman Research Notes in Mathematics Series 373 (Longman, Harlow, 1997). This book contains many references on SR axiomatics.Google Scholar
  17. 17.
    N. Straumann, General Relativity, Springer, Berlin 2004.zbMATHGoogle Scholar
  18. 18.
    J.L. Synge, Relativity: The Special Theory, Amsterdam 1956, esp. ch. VIII, B’ 16.Google Scholar
  19. 19.
    G. Herglotz, über den vom Standpunkt des Relativitätsprinzips aus als ‘starr’ zu bezeichnenden Körper, Ann. Physik 31, 393 (1910).zbMATHCrossRefADSGoogle Scholar
  20. 20.
    F. Noether, Zur Kinematik des starren Körpers in der Relativitätstheorie, Ann. Physik 31, 919 (1910).zbMATHCrossRefADSGoogle Scholar
  21. 21.
    W. Heisenberg, Die physikalischen Prinzipien der Quantentheorie, Leipzig 1930, insbes. Einleitung.Google Scholar
  22. 22.
    A. Einstein, über die vom Relativitätsprinzip geforderte Trägheit der Energie, Ann. Physik 23, 371 (1907).zbMATHADSCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • J. Ehlers
    • 1
  1. 1.Max Planck Institute for Gravitational Physics (Albert–Einstein–Institute)GolmGermany

Personalised recommendations