Special Relativity pp 506-531

Part of the Lecture Notes in Physics book series (LNP, volume 702)

Do Evanescent Modes Violate Relativistic Causality?

  • G. Nimtz

Abstract

Time dependent experiments with evanescent modes (photonic tunneling) can be performed with high precision and at a macroscopic scale with microwaves in the range of meters or in the infrared regime in the range of centimeters. The infrared technology is the present day digital signal processing and transmission. Superluminal (faster than light) signal transmission by evanescent modes was shown by Enders and Nimtz already 1992 [1].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Enders and G. Nimtz, J. Phys. I, France 2, 1693 (1992)CrossRefGoogle Scholar
  2. 2.
    V. Olkhovsky and E. Recami, Phys. Rep. 214, 339 (1992); E. Recami, Int. J. of Modern Physics, A 15, 2793 (2000); V. Olkhovsky, E. Recami, J. Jakiel, Phys. Rep. 398, 133 (2004).CrossRefADSGoogle Scholar
  3. 3.
    G. Nimtz and W. Heitmann, Progr. Quant. Electr. 21, 81 (1997).CrossRefADSGoogle Scholar
  4. 4.
    R. Chiao and A. Steinberg, Progress in Optics XXXVII, 345 (1997).CrossRefGoogle Scholar
  5. 5.
    G. Nimtz, Prog. Quantum Electronics 27, 417 (2003).CrossRefADSGoogle Scholar
  6. 6.
    R.P. Feynman, R.B. Leighton, and M. Sands, The Feyman Lectures on Physics, II 33–12, Addison-Wesley, Reading (1964).Google Scholar
  7. 7.
    G. Nimtz, A. Enders, and H. Spieker, J. Phys. I, France 4, 565 (1994).CrossRefGoogle Scholar
  8. 8.
    L. Brillouin, Wave propagation and group velocity, Academic Press, New York (1960).MATHGoogle Scholar
  9. 9.
    L. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).CrossRefADSGoogle Scholar
  10. 10.
    D. Bowmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Nature, 390, 575 (1997).CrossRefADSGoogle Scholar
  11. 11.
    Berkeley physics course, 3, Chap. 6, McGraw-Hill , New York and London (1968).Google Scholar
  12. 12.
    A. Papoulis, The Fourier Integral And Its Applications, McGraw-Hill, New York, Secs. 7.5 and 7.6 (1962).MATHGoogle Scholar
  13. 13.
    S. Esposito, Phys. Rev. E 64, 026609 (2001).CrossRefADSGoogle Scholar
  14. 14.
    J.M. Bendickson, J.P. Dowling, and M. Scalora, Phys. Rev. E 53, 4107 (1996).CrossRefADSGoogle Scholar
  15. 15.
    A. Haibel and G. Nimtz, Ann. Phys. (Leipzig) 10, 707 (2001).CrossRefADSGoogle Scholar
  16. 16.
    A. Enders and G. Nimtz, Phys. Rev. E 48, 632 (1994).CrossRefADSGoogle Scholar
  17. 17.
    E. Desurvivre, Scientific American 266 January, 96(1992).Google Scholar
  18. 18.
    S. Longhi, M. Marano, P. Laporta, and M. Belmonte, Phys. Rev. E 64, 055602 (2001).CrossRefADSGoogle Scholar
  19. 19.
    S. Longhi, P. Laporta, M. Belmonte, and E. Recami, Phys. Rev. E 65, 046610 (2002).CrossRefADSGoogle Scholar
  20. 20.
    A. Haibel, G. Nimtz, and A.A. Stahlhofen, Phys. Rev. E 63, 047601 (2001).ADSGoogle Scholar
  21. 21.
    J.P. Fillard, Near field optics and nanoscopy, Worls Scientific, Singapore (1997).Google Scholar
  22. 22.
    E. Merzbacher, Quantum Mechanics, 2nd edition, John Wiley & Sons, New York (1970).MATHGoogle Scholar
  23. 23.
    S. Gasiorowicz, Quantum Physics, John Wiley & Sons, New York (1996).Google Scholar
  24. 24.
    S.T. Ali, Phys. Rev. B 7, 1668 (1973).ADSGoogle Scholar
  25. 25.
    C.K. Carniglia and L. Mandel, Phys. Rev. D 3, 280 (1971).CrossRefADSGoogle Scholar
  26. 26.
    P. Mittelstaedt, Ann. Phys. (Leipzig) 7, 710 (1998).MATHCrossRefADSGoogle Scholar
  27. 27.
    Th. Hartman, J. Appl. Phys. 33, 3427 (1962).CrossRefADSGoogle Scholar
  28. 28.
    G. Nimtz, A. Haibel and R.-M. Vetter, Phys. Rev. E 66, 037602 (2002).ADSGoogle Scholar
  29. 29.
    A.A. Stahlhofen, Phys. Rev. A 62, 12112 (2000).CrossRefADSGoogle Scholar
  30. 30.
    F.E. Low and P.F. Mende, Ann. Phys. NY 210, 380 (1991).MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    M. Fayngold, Special Relativity and Motions Faster than Light, Wiley-VCH, Weinheim, 219–223 (2002).Google Scholar
  32. 32.
    R. Sexl und H. Schmidt, Raum-Zeit-Relativität, vieweg studium, Braunschweig (1978).Google Scholar
  33. 33.
    R.U. Sexl and H.K. Urbantke, Relativity, Groups, Particles, Springer, Wien, NewYork (2001).MATHGoogle Scholar
  34. 34.
    Th. Emig, Phys. Rev. E 54, 5780 (1996).ADSGoogle Scholar
  35. 35.
    G. Diener, Phys. Letters A, 235, 118 (1997).MATHMathSciNetCrossRefADSGoogle Scholar
  36. 36.
    H. Goenner, Ann. Phys. (Leipzig), 7, 774 (1998).MATHCrossRefADSGoogle Scholar
  37. 37.
    C.E. Shannon, Bell Sys. Tech. J., 27, 379, and 623 (1948).MathSciNetMATHGoogle Scholar
  38. 38.
    D.C. Champeney, Fourier Transforms and their Physical Applications, Academic Press, London and New York (1973).MATHGoogle Scholar
  39. 39.
    F.J. Harris, Proc. IEEE, 66, 51 (1978).CrossRefADSGoogle Scholar
  40. 40.
    C. Kittel, Thermal Physics, John Wiley & Sons, New York (1968), pp. 402–405.Google Scholar
  41. 41.
    P. Mittelstaedt, Eur. Phys. J, B 13, 353 (2000).ADSGoogle Scholar
  42. 42.
    G. Nimtz, Gen. Rel. Grav. 31, 737 (1999); G. Nimtz, Ann. Phys. (Leipzig), 7, 618 (1998).CrossRefADSGoogle Scholar
  43. 43.
    F. de Fornel, Springer Series in Optical Sciences, 73, Springer, Berlin (2001).Google Scholar
  44. 44.
    O. Bryngdahl, Progress in Optics, 11, 167 (1973).CrossRefGoogle Scholar
  45. 45.
    S. Collins, D. Lowe and J. Barker, J. Phys. C, 20, 6213 (1987).CrossRefADSGoogle Scholar
  46. 46.
    M. Büttiker and H. Thomas, Superlattices and Microstructures, 23, 781 (1998).CrossRefGoogle Scholar
  47. 47.
    M. Stenner, D. Gauthier, and M. Neifeld, Nature, 425, 695 (2003); G. Nimtz and Stenner et al., Nature, 6 May, (2004).CrossRefADSGoogle Scholar
  48. 48.
    G. Nimtz, IEEE Journal of selected topics in quantum electronics, 9, 79 (2003).CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • G. Nimtz
    • 1
  1. 1.II. Physikalisches InstitutUniversität zu KölnKölnGermany

Personalised recommendations