Tests of Lorentz Symmetry in the Spin-Coupling Sector

  • R.L. Walsworth
Part of the Lecture Notes in Physics book series (LNP, volume 702)


An overview is given of recent and ongoing experiments constraining Lorentz violation in the spin-coupling sector, with particular focus on the author’s tests of Lorentz symmetry using a 129Xe/3He Zeeman maser and an atomic hydrogen maser.


Lorentz Symmetry Lorentz Violation Magnetic Shield Hydrogen Maser Zeeman Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.A. Kostelecký, C.D. Lane: Phys. Rev. D 60, 116010 (1999).CrossRefADSGoogle Scholar
  2. 2.
    D. Bear, R.E. Stoner, R.L. Walsworth, V.A. Kostelecký, and C.D. Lane : Phys. Rev. Lett. 85, 5038 (2000); ibid., 89, 209902 (2002).CrossRefADSGoogle Scholar
  3. 3.
    C.J. Berglund, L.R. Hunter, D. Krause, Jr., E.O. Prigge, M.S. Ronfeldt, and S.K. Lamoreaux: Phys. Rev. Lett. 75, 1879 (1995).CrossRefADSGoogle Scholar
  4. 4.
    L.R. Hunter, C.J. Berglund, M.S. Ronfeldt et al: A Test of Local Lorentz Invariance Using Hg and Cs Magnetometers. In: CPT and Lorentz Symmetry, ed by V.A. Kostelecký (World Scientific, Singapore, 1999) pp 180–186.Google Scholar
  5. 5.
    F. Canè, D. Bear, D.F. Phillips, M.S. Rosen, C.L. Smallwood, R.E. Stoner, R.L. Walsworth, and V.A. Kostelecký: Phys. Rev. Lett. 93, 230801 (2004).CrossRefADSGoogle Scholar
  6. 6.
    D.F. Phillips, M.A. Humphrey, E.M. Mattison, R.E. Stoner, R.F.C. Vessot, and R.L. Walsworth: Phys. Rev. D 63, 111101 (2001). M.A. Humphrey, D.F. Phillips, E.M. Mattison, R.F.C. Vessot, R.E. Stoner, and R.L. Walsworth: Phys. Rev. A 68, 063807 (2003).CrossRefADSGoogle Scholar
  7. 7.
    D. Colladay, V.A. Kostelecký: Phys. Rev. D 55, 6760 (1997); 58, 116002 (1998). V.A. Kostelecký, R. Lehnert: Phys. Rev. D 63, 065008 (2001). V.A. Kostelecký: Phys. Rev. D 69, 105009 (2004).CrossRefADSGoogle Scholar
  8. 8.
    O.W. Greenberg: Phys. Rev. Lett. 89, 231602 (2002); Phys. Lett. B 567, 179 (2003).CrossRefADSGoogle Scholar
  9. 9.
    V.A. Kostelecký, S. Samuel: Phys. Rev. D 39, 683 (1989); Phys. Rev. Lett. 63, 224 (1989); Phys. Rev. D 40, 1886 (1989). V.A. Kostelecký, R. Potting: Nucl. Phys. B 359, 545 (1991); Phys. Rev. D 51, 3923 (1995).CrossRefADSGoogle Scholar
  10. 10.
    For reviews of approaches to Lorentz and CPT violation, see, for example, CPT and Lorentz Symmetry I, II, III, ed by V.A. Kostelecký (World Scientific, Singapore, 1999, 2002, 2004).Google Scholar
  11. 11.
    T.E. Chupp, E.R. Oteiza, J.M. Richardson, and T.R. White: Phys. Rev. A 38, 3998 (1988). G.D. Cates, R.J. Fitzgerald, A.S. Barton, P. Bogorad, M. Gatzke, N.R. Newbury, and B. Saam: Phys. Rev. A 45, 4631 (1992).CrossRefADSGoogle Scholar
  12. 12.
    K.F. Woodman et al: J. Navig. 40, 366 (1987).CrossRefGoogle Scholar
  13. 13.
    R.E. Stoner, R.L. Walsworth: Phys. Rev. A66, 032704 (2002).CrossRefADSGoogle Scholar
  14. 14.
    R. Bluhm, V.A. Kostelecký, C.D. Lane, and N. Russell: Phys. Rev. Lett. 88, 090801 (2002).CrossRefADSGoogle Scholar
  15. 15.
    D. Kleppner, H.M. Goldenberg, N.F. Ramsey: Phys. Rev. 126, 603 (1962). D. Kleppner, H.C. Berg, S.B. Crampton, N.F. Ramsey, R.F.C. Vessot, H.E. Peters, and J. Vanier: Phys. Rev. 138, A972 (1965).CrossRefADSGoogle Scholar
  16. 16.
    H.G. Andresen: Z. Physik 210, 113 (1968).CrossRefADSGoogle Scholar
  17. 17.
    M.A. Humphrey, D.F. Phillips, R.L. Walsworth: Phys. Rev. A 62, 063405 (2000).CrossRefADSGoogle Scholar
  18. 18.
    B.R. Heckel: Torsion Balance Test of Lorentz Symmetry Violation. In: CPT and Lorentz Symmetry III, ed by V.A. Kostelecký (World Scientific, Singapore, 2004) pp 133–140.Google Scholar
  19. 19.
    L.-S. Hou, W.-T. Ni, Y.-C.M. Li: Phys. Rev. Lett. 90, 201101 (2003).CrossRefADSGoogle Scholar
  20. 20.
    T.W. Kornack, M.V. Romalis: Operation of the K-3He Self-Compensating Co- Magnetometer for a Test of Lorentz Symmetry. In: CPT and Lorentz Symmetry III, ed by V. A. Kostelecký (World Scientific, Singapore, 2004) pp 57–70.Google Scholar
  21. 21.
    T.W. Kornack, M.V. Romalis: Phys. Rev. Lett. 89, 253002 (2002).CrossRefADSGoogle Scholar
  22. 22.
    J.C. Allred, R.N. Lyman, T.W. Kornack et al: Phys. Rev. Lett. 89, 130801 (2002).CrossRefADSGoogle Scholar
  23. 23.
    Because spin-exchange collisions preserve the colliding atoms’ total angular momentum, the spin decoherence Effects of such collisions are eliminated in the limit that the collision frequency is much greater than the Larmor spin-precession frequency (i.e., the Zeeman frequency) in an applied magnetic .eld. See: W. Happer, H. Tang: Phys. Rev. Lett. 31, 273 (1973) and W. Happer, A.C. Tam: Phys. Rev. A 16, 1877 (1977).CrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • R.L. Walsworth
    • 1
  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA

Personalised recommendations