Special Relativity pp 279-298

Part of the Lecture Notes in Physics book series (LNP, volume 702)

Doubly Special Relativity as a Limit of Gravity

  • K. Imiłkowska
  • J. Kowalski-Glikman

Abstract

The anniversary of a great idea is usually a good occasion for critical reassessment of its meaning, influence, and future. In theoretical physics, where methodology, instead of hermeneutics, is based on Popperian conjectures and refutations scheme this last issue – the future – is, of course, the most important. Thus, in the course of the celebrations of the 100 anniversary of the Theory of Relativity, we are mostly interested in asking the questions: Is Special Relativity still to be regarded as the correct theory describing relativistic phenomena (particles and fields kinematics and dynamics) in flat space-time? Will it survive the next 100 years, and if not, which theory is going to replace it?

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Colladay and V.A. Kostelecky, “Lorentz-Violating Extension of the Standard Model,” Phys. Rev. D 58, 116002 (1998) [arXiv:hep-ph/9809521]; R. Bluhm, V.A. Kostelecky, and N. Russell, “CPT and Lorentz Tests in Hydrogen and Antihydrogen,” Phys. Rev. Lett. 82, 2254 (1999) [arXiv:hep-ph/9810269]; R. Bluhm and V.A. Kostelecky, “Lorentz and CPT Tests in Spin-Polarized Solids,” Phys. Rev. Lett. 84, 1381 (2000) [arXiv:hep-ph/9912542]; V.A. Kostelecky and M. Mewes; “Signals for Lorentz Violation in Electrodynamics,” Phys. Rev. D 66, 056005 (2002) [arXiv:hep-ph/0205211]; R. Bluhm, V.A. Kostelecky, C.D. Lane, and N. Russell, ”Probing Lorentz and CPT Violation with Space-Based Experiments,” Phys. Rev. D 68 (2003) 125008 [arXiv:hep-ph/0306190]; R. C. Myers and M. Pospelov, ”Ultraviolet modifications of dispersion relations in effective field theory,” Phys. Rev. Lett. 90 (2003) 211601 [arXiv:hep-ph/0301124]; see also Robert Bluhm contribution to this volume.ADSGoogle Scholar
  2. 2.
    J. Alfaro, H. A. Morales-Tecotl and L. F. Urrutia, “Quantum gravity corrections to neutrino propagation,” Phys. Rev. Lett. 84 (2000) 2318 [arXiv:gr-qc/9909079]; J. Alfaro, H. A. Morales-Tecotl and L. F. Urrutia, “Loop quantum gravity and light propagation,” Phys. Rev. D 65 (2002) 103509 [arXiv:hep-th/0108061]; J. Alfaro, M. Reyes, H. A. Morales-Tecotl and L. F. Urrutia, “On alternative approaches to Lorentz violation in loop quantum gravity inspired models,” Phys. Rev. D 70 (2004) 084002 [arXiv:gr-qc/0404113]; see also Luis Urrutia contribution to this volume.CrossRefADSGoogle Scholar
  3. 3.
    T. Jacobson, S. Liberati and D. Mattingly, “Astrophysical bounds on Planck suppressed Lorentz violation,” arXiv:hep-ph/0407370.Google Scholar
  4. 4.
    T. Jacobson, S. Liberati and D. Mattingly, “Lorentz violation at high energy: concepts, phenomena and astrophysical constraints,” arXiv:astro-ph/505267.Google Scholar
  5. 5.
    L. Smolin, “Falsifiable predictions from semiclassical quantum gravity,” arXiv:hepth/0501091.Google Scholar
  6. 6.
    G. Amelino-Camelia, “Testable scenario for relativity with minimum-length,” Phys. Lett. B 510, 255 (2001) [arXiv:hep-th/0012238].MATHCrossRefADSGoogle Scholar
  7. 7.
    G. Amelino-Camelia, “Relativity in space-times with short-distance structure governed by an observer-independent (Planckian) length scale,” Int. J. Mod. Phys. D11, 35 (2002) [arXiv:gr-qc/0012051].MATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    J. Kowalski-Glikman, “Observer independent quantum of mass,” Phys. Lett. A 286 (2001) 391 [arXiv:hep-th/0102098].MATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    N. R. Bruno, G. Amelino-Camelia and J. Kowalski-Glikman, “Deformed boost transformations that saturate at the Planck scale,” Phys. Lett. B 522 (2001) 133 [arXiv:hep-th/0107039].MATHCrossRefADSGoogle Scholar
  10. 10.
    J. Kowalski-Glikman, “Introduction to doubly special relativity,” in Giovanni Amelino-Camelia and Jerzy Kowalski-Glikman, Planck Scale Effects in Astrophysics and Cosmology, Lecture Notes in Physics 669, Springer 2005 [arXiv:hepth/ 0405273].Google Scholar
  11. 11.
    J. Lukierski, H. Ruegg, A. Nowicki and V. N. Tolstoi, “Q deformation of Poincare algebra,” Phys. Lett. B 264 (1991) 331.MathSciNetCrossRefADSGoogle Scholar
  12. 12.
    J. Lukierski, A. Nowicki and H. Ruegg, “Real forms of complex quantum anti- De Sitter algebra Uq(Sp(4:C)) and their contraction schemes,” Phys. Lett. B 271 (1991) 321 [arXiv:hep-th/9108018].MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    S. Majid and H. Ruegg, “Bicrossproduct structure of kappa Poincare group and noncommutative geometry,” Phys. Lett. B 334 (1994) 348 [arXiv:hep-th/9405107].MathSciNetCrossRefADSMATHGoogle Scholar
  14. 14.
    J. Lukierski, H. Ruegg and W. J. Zakrzewski, “Classical quantum mechanics of free kappa relativistic systems,” Annals Phys. 243 (1995) 90 [arXiv:hep-th/9312153].MATHMathSciNetCrossRefADSGoogle Scholar
  15. 15.
    J. Magueijo and L. Smolin, “Lorentz invariance with an invariant energy scale,” Phys. Rev. Lett. 88 (2002) 190403 [arXiv:hep-th/0112090].CrossRefADSGoogle Scholar
  16. 16.
    J. Magueijo and L. Smolin, “Generalized Lorentz invariance with an invariant energy scale,” Phys. Rev. D 67 (2003) 044017 [arXiv:gr-qc/0207085].MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    J. Kowalski-Glikman and S. Nowak, “Doubly special relativity and de Sitter space,” Class. Quant. Grav. 20 (2003) 4799 [arXiv:hep-th/0304101].MATHMathSciNetCrossRefADSGoogle Scholar
  18. 18.
    J. Kowalski-Glikman and S. Nowak, “Quantum kappa-Poincare algebra from de Sitter space of momenta,” arXiv:hep-th/0411154.Google Scholar
  19. 19.
    A. Blaut, M. Daszkiewicz, J. Kowalski-Glikman and S. Nowak, “Phase spaces of doubly special relativity,” Phys. Lett. B 582 (2004) 82 [arXiv:hep-th/0312045].MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    L. Freidel and A. Starodubtsev, “Quantum gravity in terms of topological observables,” arXiv:hep-th/0501191.Google Scholar
  21. 21.
    S. W. MacDowell and F. Mansouri, “Unified Geometric Theory Of Gravity And Supergravity,” Phys. Rev. Lett. 38, 739 (1977) [Erratum-ibid. 38, 1376 (1977)].MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    L. Freidel, K. Krasnov and R. Puzio, “BF description of higher-dimensional gravity theories,” Adv. Theor. Math. Phys. 3, 1289 (1999) [arXiv:hep-th/9901069].MATHMathSciNetGoogle Scholar
  23. 23.
    L. Smolin and A. Starodubtsev, “General relativity with a topological phase: An action principle,” arXiv:hep-th/0311163.Google Scholar
  24. 24.
    S. Alexander, “A quantum gravitational relaxation of the cosmological constant,” arXiv:hep-th/0503146.Google Scholar
  25. 25.
    A. P. Balachandran, G. Marmo, B. S. Skagerstam and A. Stern, “Gauge Symmetries And Fiber Bundles: Applications To Particle Dynamics,” Lect. Notes Phys. 188 (1983) 1.MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    L. Freidel, J. Kowalski-Glikman and L. Smolin, “2+1 gravity and doubly special relativity,” Phys. Rev. D 69 (2004) 044001 [arXiv:hep-th/0307085].MathSciNetCrossRefADSGoogle Scholar
  27. 27.
    A. Staruszkiewicz, Acta Phys. Polon. 24, 734 (1963).MathSciNetGoogle Scholar
  28. 28.
    S. Deser, R. Jackiw and G. ’t Hooft, “Three-Dimensional Einstein Gravity: Dynamics Of Flat Space,” Annals Phys. 152, 220 (1984).CrossRefADSGoogle Scholar
  29. 29.
    E. Witten, “(2+1)-Dimensional Gravity As An Exactly Soluble System,” Nucl. Phys. B 311, 46 (1988).MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    H. J. Matschull and M. Welling, “Quantum mechanics of a point particle in 2+1 dimensional gravity,” Class. Quant. Grav. 15 (1998) 2981 [arXiv:gr-qc/9708054].MATHMathSciNetCrossRefADSGoogle Scholar
  31. 31.
    J. Wess, “Deformed coordinate spaces: Derivatives,” arXiv:hep-th/0408080.Google Scholar
  32. 32.
    J. Kowalski-Glikman, “De Sitter space as an arena for doubly special relativity,” Phys. Lett. B 547 (2002) 291 [arXiv:hep-th/0207279].MATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • K. Imiłkowska
    • 1
  • J. Kowalski-Glikman
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of WrołlawWrocławPoland

Personalised recommendations