Mining Association Rules in Folksonomies

  • Christoph Schmitz
  • Andreas Hotho
  • Robert Jäschke
  • Gerd Stumme
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

Social bookmark tools are rapidly emerging on the Web. In such systems users are setting up lightweight conceptual structures called folksonomies. These systems provide currently relatively few structure. We discuss in this paper, how association rule mining can be adopted to analyze and structure folksonomies, and how the results can be used for ontology learning and supporting emergent semantics. We demonstrate our approach on a large scale dataset stemming from an online system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGRAWAL, R., IMIELINSKI, T. and SWAMI, A. (1993): Mining association rules between sets of items in large databases. In: Proc. of SIGMOD 1993, pp. 207–216. ACM Press.Google Scholar
  2. CONNOTEA (2005): Connotea Mailing List. https://lists.sourceforge.net/lists/listinfo/connotea-discuss.Google Scholar
  3. GANTER, B. and WILLE, R. (1999): Formal Concept Analysis: Mathematical foundations. Springer.Google Scholar
  4. HAMMOND, T., HANNAY, T., LUND, B. and SCOTT, J. (2005): Social Bookmarking Tools (I): A General Review. D-Lib Magazine, 11(4).Google Scholar
  5. HOTHO, A., JÄSCHKE, R., SCHMITZ, C. and STUMME, G. (2006): Information Retrieval in Folksonomies: Search and Ranking. In: submitted for publication at ESWC 2006.Google Scholar
  6. LEHMANN, F. and WILLE, R. (1995): A triadic approach to Formal Concept Analysis. In: G. Ellis, R. Levinson, W. Rich and J. F. Sowa (Eds.), Conceptual Structures: Applications, Implementation and Theory, vol. 954 of Lecture Notes in Computer Science. Springer. ISBN 3-540-60161-9.Google Scholar
  7. HANNAY, T. (2005): Social Bookmarking Tools (II): A Case Study-Connotea. D-Lib Magazine, 11(4).Google Scholar
  8. MATHES, A. (2004): Folksonomies — Cooperative Classification and Communication Through Shared Metadata. http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html.Google Scholar
  9. MIKA, P. (2005): Ontologies Are Us: A Unified Model of Social Networks and Semantics. In: Y. Gil, E. Motta, V. R. Benjamins and M. A. Musen (Eds.), ISWC 2005, vol. 3729 of LNCS, pp. 522–536. Springer-Verlag, Berlin Heidelberg.CrossRefGoogle Scholar
  10. PASQUIER, N., BASTIDE, Y., TAOUIL, R. and LAKHAL, L. (1999): Closed set based discovery of small covers for association rules. In: Actes des 15mes journes Bases de Donnes Avances (BDA’99), pp. 361–381.Google Scholar
  11. STAAB, S., SANTINI, S., NACK, F., STEELS, L. and MAEDCHE, A. (2002): Emergent semantics. Intelligent Systems, IEEE, 17(1):78.CrossRefGoogle Scholar
  12. STEELS, L. (1998): The Origins of Ontologies and Communication Conventions in Multi-Agent Systems. Autonomous Agents and Multi-Agent Systems, 1(2):169.CrossRefGoogle Scholar
  13. STUMME, G. (1999): Conceptual Knowledge Discovery with Frequent Concept Lattices. FB4-Preprint 2043, TU Darmstadt.Google Scholar
  14. STUMME, G. (2002): Efficient Data Mining Based on Formal Concept Analysis. In: A. Hameurlain, R. Cicchetti and R. Traunmller (Eds.), Proc. DEXA 2002, vol. 2453 of LNCS, pp. 534–546. Springer, Heidelberg.Google Scholar
  15. STUMME, G. (2005): A Finite State Model for On-Line Analytical Processing in Triadic Contexts. In: B. Ganter and R. Godin (Eds.), ICFCA, vol. 3403 of Lecture Notes in Computer Science, pp. 315–328. Springer. ISBN 3-540-24525-1.Google Scholar
  16. WILLE, R. (1982): Restructuring lattices theory: An approach based on hierarchies of concepts. In: I. Rival (Ed.), Ordered Sets, pp. 445–470. Reidel, Dordrecht-Boston.Google Scholar
  17. ZAKI, M. J. and HSIAO, C.-J. (1999): ChARM: An efficient algorithm for closed association rule mining. Technical Report 99-10. Tech. rep., Computer Science Dept., Rensselaer Polytechnic.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 2006

Authors and Affiliations

  • Christoph Schmitz
    • 1
  • Andreas Hotho
    • 1
  • Robert Jäschke
    • 1
    • 2
  • Gerd Stumme
    • 1
    • 2
  1. 1.Knowledge & Data Engineering Group, Department of Mathematics and Computer ScienceUniversity of KasselKasselGermany
  2. 2.Research Center L3SHannoverGermany

Personalised recommendations