Advertisement

The Landauer-Büttiker Formula and Resonant Quantum Transport

  • Horia D. Cornean
  • Arne Jensen
  • Valeriu Moldoveanu
Part of the Lecture Notes in Physics book series (LNP, volume 690)

Abstract

We give a short presentation of two recent results. The first one is a rigorous proof of the Landauer-Büttiker formula, and the second one concerns resonant quantum transport. The detailed results are in [2]. In the last section we present the results of some numerical computations on a model system.

Keywords

Dirichlet Boundary Condition Landau Level Grand Canonical Ensemble Linear Response Regime Constant Voltage Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Aschbacher, V. Jaksic, Y. Pautrat, C.-A. Pillet: Introduction to non-equilibrium quantum statistical mechanics Preprint, 2005.Google Scholar
  2. 2.
    H.D. Cornean, A. Jensen, and V. Moldoveanu: A rigorous proof of the Landauer-Büttiker formula. J. Math. Phys. 46, 042106 (2005).zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    S. Datta: Electronic transport in mesoscopic systems Cambridge University Press, 1995.Google Scholar
  4. 4.
    V. Jaksic, C.-A. Pillet, Comm. Math. Phys. 226, no. 1, 131–162 (2002).zbMATHMathSciNetCrossRefADSGoogle Scholar
  5. 5.
    V. Jaksic, C.-A. Pillet, J. Statist. Phys. 108 no. 5-6, 787–829 (2002).zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    V. Moldoveanu, A. Aldea, A. Manolescu, M. Niţă, Phys. Rev. B 63, 045301–045309 (2001).CrossRefADSGoogle Scholar
  7. 7.
    D.R. Yafaev: Mathematical Scattering Theory, Amer. Math. Soc. 1992.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Horia D. Cornean
    • 1
  • Arne Jensen
    • 2
  • Valeriu Moldoveanu
    • 3
  1. 1.Department of Mathematical SciencesAalborg UniversityAalborgDenmark
  2. 2.Department of Mathematical SciencesAalborg UniversityAalborgDenmark
  3. 3.National Institute of Materials PhysicsMagureleRomania

Personalised recommendations