The Landauer-Büttiker Formula and Resonant Quantum Transport

  • Horia D. Cornean
  • Arne Jensen
  • Valeriu Moldoveanu
Part of the Lecture Notes in Physics book series (LNP, volume 690)


We give a short presentation of two recent results. The first one is a rigorous proof of the Landauer-Büttiker formula, and the second one concerns resonant quantum transport. The detailed results are in [2]. In the last section we present the results of some numerical computations on a model system.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Aschbacher, V. Jaksic, Y. Pautrat, C.-A. Pillet: Introduction to non-equilibrium quantum statistical mechanics Preprint, 2005.Google Scholar
  2. 2.
    H.D. Cornean, A. Jensen, and V. Moldoveanu: A rigorous proof of the Landauer-Büttiker formula. J. Math. Phys. 46, 042106 (2005).MATHMathSciNetCrossRefADSGoogle Scholar
  3. 3.
    S. Datta: Electronic transport in mesoscopic systems Cambridge University Press, 1995.Google Scholar
  4. 4.
    V. Jaksic, C.-A. Pillet, Comm. Math. Phys. 226, no. 1, 131–162 (2002).MATHMathSciNetCrossRefADSGoogle Scholar
  5. 5.
    V. Jaksic, C.-A. Pillet, J. Statist. Phys. 108 no. 5-6, 787–829 (2002).MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    V. Moldoveanu, A. Aldea, A. Manolescu, M. Niţă, Phys. Rev. B 63, 045301–045309 (2001).CrossRefADSGoogle Scholar
  7. 7.
    D.R. Yafaev: Mathematical Scattering Theory, Amer. Math. Soc. 1992.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Horia D. Cornean
    • 1
  • Arne Jensen
    • 2
  • Valeriu Moldoveanu
    • 3
  1. 1.Department of Mathematical SciencesAalborg UniversityAalborgDenmark
  2. 2.Department of Mathematical SciencesAalborg UniversityAalborgDenmark
  3. 3.National Institute of Materials PhysicsMagureleRomania

Personalised recommendations