Global Climatologies Based on Radio Occultation Data: The CHAMPCLIM Project

  • U. Foelsche
  • A. Gobiet
  • A. K. Steiner
  • M. Borsche
  • J. Wickert
  • T. Schmidt
  • G. Kirchengast

Abstract

The German/US research satellite CHAMP (CHAllenging Minisatellite Payload for geoscientific research) continuously records about 230 radio occultation (RO) profiles per day since March 2002. The mission is expected to last at least until 2007, thus CHAMP RO data provide the first opportunity to create RO based climatologies on a longer term. CHAMPCLIM is a joint project of the Wegener Center for Climate and Global Change (WegCenter) in Graz and the GeoForschungsZentrum (GFZ) in Potsdam. It aims at exploiting the CHAMP RO data in the best possible manner for climate research. For this purpose, CHAMP excess phase data provided by GFZ are processed at WegCenter with a new retrieval scheme, especially tuned for monitoring climate variability and change. The atmospheric profiles which pass all quality checks (∼150 profiles/day) are used to create climatologies on a monthly, seasonal, and annual basis. Here, we focus on dry temperature climatologies from the winter season (DJF) 2002/03 to the summer season (JJA) 2004, obtained by averaging-and-binning. The results show that useful dry temperature climatologies resolving horizontal scales >1000 km can be obtained even with data from a single RO receiver. RO based climatologies have the potential to improve modern operational climatologies, especially in regions where the data coverage and/or the vertical resolution and accuracy of RO data is superior to traditional data sources.

References

  1. Anthes RA, Rocken C, Kuo Y (2000) Applications of COSMIC to meteorology and climate. Terr Atmos Oceanic Sci 11(1):115–156Google Scholar
  2. Borsche M, Gobiet A, Steiner AK, Foelsche U, Kirchengast G, Schmidt T, Wickert J (2006) Pre-Operational Retrieval of Radio Occultation Based Climatologies. This issueGoogle Scholar
  3. Christy JR, Spencer RW (2003) Reliability of satellite data sets. Science 301:1046–1047CrossRefGoogle Scholar
  4. Foelsche U, Kirchengast G, Steiner AK (2003) Global climate monitoring based on CHAMP/GPS radio occultation data. In: First CHAMP mission results for gravity, magn. and atm. Studies. Reigber C, Lühr H, Schwintzer P (eds), Springer, pp 397–407Google Scholar
  5. Foelsche U, Gobiet A, Loescher A, Kirchengast G, Steiner AK, Wickert J, Schmidt T (2005) The CHAMPCLIM Project: An overview. In: Earth Observation with CHAMP: Results from Three Years in Orbit. Reigber C, Luehr H, Schwintzer P, Wickert J (eds), Springer, Berlin, pp 615–619CrossRefGoogle Scholar
  6. Gobiet A, Kirchengast G (2004) Advancements of GNSS Radio Occultation Retrieval in the Upper Stratosphere for Optimal Climate Monitoring Utility. J Geophys Res 109, D24110, doi:10.1029/2004JD005117CrossRefGoogle Scholar
  7. Gobiet A, Steiner AK, Retscher C, Foelsche U, Kirchengast G (2004) Radio Occultation Data and Algorithms Validation Based on CHAMP/GPS Data. IGAM/UniGraz Tech Rep for ASA 1/2004, 46 ppGoogle Scholar
  8. Gobiet A, Kirchengast G, Wickert J, Retscher C, Wang D-Y, Hauchecorne A (2005a) Evaluation of Stratospheric Radio Occultation Retrieval using Data from CHAMP, MIPAS, GOMOS, and ECMWF Analysis Fields. In: Earth observation with CHAMP-Results from three years in orbit, Reigber C, et al. (eds), Springer, Berlin, pp 531–536CrossRefGoogle Scholar
  9. Gobiet A, Foelsche U, Steiner AK, Borsche M, Kirchengast G, Wickert J (2005b) Climatological validation of stratospheric temperatures in ECMWF operational analyses with CHAMP radio occultation data. Geophys Res Lett 32, L12806, doi:10.1029/2005GL022617CrossRefGoogle Scholar
  10. Hajj GA, Ao CO, Iijima PA, Kuang D, Kursinski ER, Mannucci AJ, Meehan TK, Romans LJ, de la Torre Juarez M, Yunck TP (2004) CHAMP and SAC-C atmospheric occultation results and intercomparisons. J Geophys Res 109, D06109, doi:10.1029/2003JD003909CrossRefGoogle Scholar
  11. IPCC (2001) Climate change 2001: The scientific basis. Cambridge Univ Press, 881 ppGoogle Scholar
  12. Kirchengast G, Fritzer J, Ramsauer J (2002) End-to-end GNSS Occultation Performance Simulator Version 4 (EGOPS4) Software User Manual (Overview and Reference Manual), Tech Rep ESA/ESTEC-5/2001, IGAM, Univ of Graz, Austria, 472 ppGoogle Scholar
  13. Leroy SS (1997) The measurement of geopotential heights by GPS radio occultation. J Geophys Res 102(D6):6971–6986CrossRefGoogle Scholar
  14. Leroy SS, Dykema JA, Anderson JG (2006) Climate Benchmarking Using GNSS Occultation. This issueGoogle Scholar
  15. Loiselet M, Stricker N, Menard Y, Luntama J-P (2000) GRAS — MetOp’s GPS-based atmospheric sounder. ESA Bulletin, 102:38–44Google Scholar
  16. Löscher A, Kirchengast G (2006) Optimal Fusion of Radio Occultation Profiles with GCM Fields within a 3D-Var Framework. This issueGoogle Scholar
  17. Mears CA, Wentz FJ (2005) The effect of diurnal correction on satellite-derived lower tropospheric temperature. Science 309:1548–1551, doi: 10.1126/science.1114772CrossRefGoogle Scholar
  18. Poli P (2006) Assimilation of GNSS radio occultation data into numerical weather prediction. This issueGoogle Scholar
  19. Rocken C, Kuo Y-H, Schreiner WS, Hunt D, Sokolovskiy S, McCormick C (2000), COSMIC system description. Terr Atmo Oceanic Sci 11(1):21–52Google Scholar
  20. Roeckner E, Baeuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweidea U, Tompkins A (2003) The atmospheric general circulation model ECHAM5 Part 1. MPI Rep, 349, Max-Planck-Inst f Meteorol, Hamburg, GermanyGoogle Scholar
  21. Smith EK, Weintraub S (1953) The constants in the equation for atmospheric refractive index at radio frequencies. Proc IRE 41:1035–1037Google Scholar
  22. Steiner AK, Kirchengast G (2005) Error analysis for GNSS radio occultation data based on ensembles of profiles from end-to-end simulations. J Geophys Res 110, D15307, doi:10.1029/2004JD005251CrossRefGoogle Scholar
  23. Steiner AK, Gobiet A, Foelsche U, Kirchengast G (2004) Radio Occultation Data Processing Advancements for Optimizing Climate Utility. Tech Rep ASA 3/2004, Inst for Geophys, Astrophys, and Meteorol, Univ of Graz, Austria, pp 87Google Scholar
  24. Steiner AK, Löscher A, Kirchengast G (2006) Error Characteristics of Refractivity Profiles Retrieved from CHAMP Radio Occultation Data. This issueGoogle Scholar
  25. Stendel M (2006) Monitoring Climate Variability and Change by Means of GNSS Data. This issueGoogle Scholar
  26. Syndergaard S (1999) Retrieval analysis and methodologies in atmospheric limb sounding using the GNSS radio occultation technique. DMI Sci Rep 99–6, Danish Met Inst, Copenhagen, Denmark, 131 ppGoogle Scholar
  27. Vedel H, Stendel M (2004) GPS RO refractivities as a climate change measure. Clim Change, submittedGoogle Scholar
  28. Vinnikov KY, Grody NC (2003) Global warming trend of mean tropospheric temperature observed by satellites. Science 302:269–272CrossRefGoogle Scholar
  29. Wickert J, Reigber C, Beyerle G, König R, Marquardt C, Schmidt T, Grunwaldt L, Galas R, Meehan T, Melbourne W, Hocke K (2001) Atmosphere Sounding by GPS Radio Occultation: First results from CHAMP. Geoph Res Lett 28:3263–3266CrossRefGoogle Scholar
  30. Wickert J, Schmidt T, Beyerle G, König R, Reigber C, Jakowski N (2004) The radio occultation experiment aboard CHAMP: Operational data analysis and validation of vertical atmospheric profiles. J Met Soc Japan 82:381–395CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • U. Foelsche
    • 1
  • A. Gobiet
    • 1
  • A. K. Steiner
    • 1
  • M. Borsche
    • 1
  • J. Wickert
    • 2
  • T. Schmidt
    • 2
  • G. Kirchengast
    • 1
  1. 1.Wegener Center for Climate and Global Change (WegCenter) and Institute for Geophysics, Astrophysics, and Meteorology (IGAM)University of GrazAustria
  2. 2.GeoForschungsZentrum Potsdam (GFZ)Germany

Personalised recommendations