Advertisement

Climate Benchmarking Using GNSS Occultation

  • S. S. Leroy
  • J. A. Dykema
  • J. G. Anderson

Abstract

We put climate monitoring in a scientific context, which can be arrived at through a careful implementation of Bayesian inference. What we find is that a good climate monitoring tool must help address the physics of a climate model so as to make it better able to predict future climates. GNSS occultation is ideal because it offers sensitivity to improve the model physics which affects the stratospheric Brewer-Dobson circulation, the tropical tropospheric hydrological cycle, and the poleward migration of the mid-latitude storm track. Also, GNSS occultation is ideal because it can be readily made into a benchmark measurement provided clock calibration is always done by double-differencing, and measurements used to determine precise orbits and information on ionospheric activity are archived as auxiliary information. In doing so, GNSS occultation can be made S.I. traceable.

Keywords

Global Navigation Satellite System Planetary Wave Radio Occultation Atomic Clock Precipitable Water Vapor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bureau International des Poids et Mesures (1997) The International System of Units. Paris, 7th editionGoogle Scholar
  2. [2]
    Covey C, AchutaRao KM, Cubasch U, Jones P, Lambert SJ, Mann ME, Phillips TJ, Taylor KE (2003) An overview of results from the Coupled Model Intercomparison Project. Global and Planetary Change 37(1–2):103–133CrossRefGoogle Scholar
  3. [3]
    Douville H, Chauvin F, Planton S, Royer JF, Salas-Melia D, Tyteca S (2002) Sensitivity of the hydrological cycle to increasing amounts of greenhouse gases and aerosols. Climate Dyn 20(1):45–68CrossRefGoogle Scholar
  4. [4]
    Folland CK, Karl TR, Coauthors (2001) Observed Climate Variability and Change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate Chance 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, pp 99–181Google Scholar
  5. [5]
    Forest CE, Stone PH, Sokolov AP, Allen MR, Webster MD (2002) Quantifying uncertainties in climate system properties with the use of recent climate observations. Science 295(5552):113–117CrossRefGoogle Scholar
  6. [6]
    Gauch HG (2003) Scientific Method in Practice. Cambridge University Press, New YorkGoogle Scholar
  7. [7]
    Gobiet A, Kirchengast G (2004) Advancements of Global Navigation Satellite System radio occultation retrieval in the upper stratosphere for optimal climate monitoring utility. J Geophys Res 109:D24110CrossRefGoogle Scholar
  8. [8]
    Goody R, Anderson J, North G (1998) Testing climate models: An approach. Bull Amer Meteor Soc 79(11):2541–2549CrossRefGoogle Scholar
  9. [9]
    Hajj GA, Kursinski ER, Romans LJ, Bertiger WI, Leroy SS (2002) A technical description of atmospheric sounding by GPS occultation. J Atmos Solar Terr Phys 64(4):451–469CrossRefGoogle Scholar
  10. [10]
    Hardy KR, Hajj GA, Kursinski ER (1994) Accuracies of atmospheric profiles obtained from GPS occultations. Int J Sat Comm 12(5):463–473Google Scholar
  11. [11]
    Haynes PH, Marks CJ, McIntyre ME, Shepherd TG, Shine KP (1991) On the downward control of extratropical diabatic circulations by eddy-induced mean zonal forces. J Atmos Sci 48(4):651–679CrossRefGoogle Scholar
  12. [12]
    Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate Chance 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New YorkGoogle Scholar
  13. [13]
    Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP-NCAR Reanalysis Project. Bull Amer Meteor Soc 77(3):437–471CrossRefGoogle Scholar
  14. [14]
    Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using Global Positioning System. J Geophys Res 102(D19):23429–23465CrossRefGoogle Scholar
  15. [15]
    Leroy SS (1998) Detecting climate signals: Some Bayesian aspects. J Climate 11(4):640–651CrossRefGoogle Scholar
  16. [16]
    Leroy SS, North GR (2000) The application of COSMIC data to global change research. Terr Atmos Ocean Sci 11(1):187–210Google Scholar
  17. [17]
    Melbourne WG, Davis ES, Duncan CB, Hajj GA, Hardy KR, Kursinski ER, Meehan TK, Young LE, Yunck TP (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. Technical Report 94-18, Jet Propulsion Laboratory, California Institute of TechnologyGoogle Scholar
  18. [18]
    Pollock DB, Murdock TL, Datla RU, Thompson A (2003) Data uncertainty traced to SI units. Results reported in the International System of Units. Int J Rem Sensing 24(2):225–235CrossRefGoogle Scholar
  19. [19]
    Smith EK, Weintraub S (1953) The constants in the equation for atmospheric refractive index at radio frequencies. Proc IRE 41:1035–1037Google Scholar
  20. [20]
    Stott PA, Tett SFB, Jones GS, Allen MR, Ingram WJ, Mitchell JFB (2001) Attribution of twentieth century temperature change to natural and anthropogenic causes. Climate Dyn 17(1):1–21CrossRefGoogle Scholar
  21. [21]
    Yuan LL, Anthes RA, Ware RH, Rocken C, Bonner WD, Bevis MG, Businger S (1993) Sensing climate-change using the Global Positioning System. J Geophys Res 98(D8):14925–14937Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • S. S. Leroy
    • 1
  • J. A. Dykema
    • 1
  • J. G. Anderson
    • 1
  1. 1.Harvard UniversityCambridgeUSA

Personalised recommendations