Estimations of Similarity in Formal Concept Analysis of Data with Graded Attributes

  • Radim Bělohlávek
  • Vilém Vychodil
Part of the Studies in Computational Intelligence book series (SCI, volume 23)

Summary

We study similarity in formal concept analysis of data tables with graded attributes. We focus on similarity related to formal concepts and concept lattices, i.e. the outputs of formal concept analysis. We present several formulas for estimation of similarity of outputs in terms of similarity of inputs. The results answer some problems which arose in previous investigation as well as some natural questions concerning similarity in conceptual data analysis. The derived formulas enable us to compute an estimation of similarity of concept lattices much faster than one can compute their exact similarity. We omit proofs due to lack of space.

Key words

formal concept analysis fuzzy logic similarity concept lattice hedge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bělohlávek R.: Similarity relations in concept lattices. J. Logic Gomput. 10(6):823–845, 2000.CrossRefGoogle Scholar
  2. 2.
    Bělohlávek R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer, Academic/Plenum Publishers, New York, 2002.Google Scholar
  3. 3.
    Bělohlávek R.: Concept lattices and order in fuzzy logic. Ann. Pure Appl. Logic 128(2004), 277–298.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bělohlávek R., Dvořák J., Outrata J.: Fast factorization by similarity in formal concept analysis of data with fuzzy attributes (submitted). Preliminary version in Proc. CLA 2004, pp. 47–57.Google Scholar
  5. 5.
    Bělohlávek R., Vychodil V.: Reducing the size of fuzzy concept lattices by hedges. Proc. FUZZ-IEEE, pp. 663–668, Reno, Nevada, 2005.Google Scholar
  6. 6.
    Bělohlávek R., Vychodil V.: Fuzzy attribute logic: attribute implications, their validity, entailment, and non-redundant basis. Proc. IFSA 2005, Vol. I, pp. 622–627.Google Scholar
  7. 7.
    Burusco A., Fuentes-Gonzáles R.: The study of the L-fuzzy concept lattice. Mathware & Soft Computing, 3(1994), 209–218.Google Scholar
  8. 8.
    Carpineto C, Romano G.: Concept Data Analysis. Theory and Applications. J. Wiley, 2004.Google Scholar
  9. 9.
    Ganter B., Wille R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin, 1999.MATHGoogle Scholar
  10. 10.
    Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.MATHGoogle Scholar
  11. 11.
    Hájek P.: On very true. Fuzzy Sets and Systems 124(2001), 329–333.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Pollandt S.: Fuzzy Begriffe. Springer-Verlag, Berlin/Heidelberg, 1997.MATHGoogle Scholar
  13. 13.
    Zadeh L. A.: Similarity relations and fuzzy orderings. Information Sciences 3(1971), 159–176.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Radim Bělohlávek
    • 1
  • Vilém Vychodil
    • 1
  1. 1.Dept. Computer SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations