Advertisement

Vacuoles

  • Heide N. Schulz-Vogt
Part of the Microbiology Monographs book series (MICROMONO, volume 1)

Abstract

Within the filamentous sulfur bacteria there are giant forms with cell diameters of up to several hundred microns. Members of this monophyletic group of bacteria possess a central vacuole, which restricts the active cytoplasm to a thin outer layer. Most of these sulfur bacteria seem to store nitrate in the vacuole, which they use as an electron acceptor for the oxidation of sulfide.

Keywords

Hydrothermal Vent Central Vacuole Guaymas Basin Thin Outer Layer Giant Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fossing H, Gallardo VA, Jørgensen BB, Hüttel M, Nielsen LP, Schulz H, Canfield DE, Forster S, Glud RN, Gundersen JK, Küver J, Ramsing NB, Teske A, Thamdrup B, Ulloa O (1995) Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature 374:713–715CrossRefGoogle Scholar
  2. Jannasch HW, Nelson DC, Wirsen CO (1989) Massive natural occurrence of unusually large bacteria (Beggiatoa sp.) at a hydrothermal deep-sea vent site. Nature 342:834–836CrossRefGoogle Scholar
  3. Jørgensen BB, Gallardo VA (1999) Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol Ecol 28:301–313Google Scholar
  4. Kalanetra KM, Huston SL, Nelson DC (2004) Novel, attached, sulfur-oxidizing bacteria at shallow hydrothermal vents possess vacuoles not involved in respiratory nitrate accumulation. Appl Environ Microbiol 70:7487–7496PubMedCrossRefGoogle Scholar
  5. Maier S, Gallardo VA (1984) Thioploca araucae sp. nov. and Thioploca chileae sp. nov. Int J Syst Bacteriol 34:414–418Google Scholar
  6. Maier S, Murray RGE (1965) The fine structure of Thioploca ingrica and a comparison with Beggiatoa. Can J Microbiol 11:645–655PubMedCrossRefGoogle Scholar
  7. Maier S, Völker H, Beese M, Gallardo VA (1990) The fine structure of Thioploca araucae and Thioploca chileae. Can J Microbiol 36:438–448CrossRefGoogle Scholar
  8. McHatton SC, Barry JP, Jannasch HW, Nelson DC (1996) High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa spp. Appl Environ Microbiol 62:954–958PubMedGoogle Scholar
  9. Nelson DC, Wirsen CO, Jannasch HW (1989) Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin. Appl Environ Microbiol 55:2909–2917PubMedGoogle Scholar
  10. Schulz HN, Jørgensen BB (2001) Big bacteria. Annu Rev Microbiol 55:105–137PubMedCrossRefGoogle Scholar
  11. Schulz HN, Brinkhoff T, Ferdelman TG, Hernández Mariné M, Teske A, Jørgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495PubMedCrossRefGoogle Scholar
  12. Teske A, Nelson DC (2004) The genera Beggiatoa and Thioploca. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiological community. Springer, Berlin Heidelberg New York. http://141.150.157.117:8080/prokPUB/chaprender/jsp/showchap.jsp?chapnum=432&initsec=01_00Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Heide N. Schulz-Vogt
    • 1
  1. 1.Institute for MicrobiologyUniversity of HanoverHanoverGermany

Personalised recommendations