Surface-Enhanced Raman Scattering pp 217-240 | Cite as
Tip-Enhanced Raman Spectroscopy (TERS)
3 Conclusion/Outlook
Tip-enhanced Raman spectroscopy is a vibrational spectroscopy with hitherto unprecedented sensitivity and spatial resolution. Since the enhancement is mainly provided by the near-field excited at the apex of a suitable tip, TERS appears to be a widely applicable spectroscopy and microscopy tool, in contrast to its parents, surface-enhanced Raman spectroscopy (SERS) and scanning near-field optical microscopy (SNOM). TER scattering has been observed for a number of molecules adsorbed at various substrates, including single-crystalline metal surfaces, showing thereby a more than million-fold enhancement of the Raman scattering. It is important to note that the field-enhancement provides, beyond TERS, promising avenues for applications to other optical techniques, such as tip-enhanced CARS, two-photon fluorescence and infrared scattering-type near-field microscopy.
Common to all these approaches is the high spatial resolution that is by far better than Abbe’s diffraction limit of λ/2. The lateral resolution achieved today is in the range of 10 nm to 20 nm. Optical microscopy with such an excellent resolution has a very promising future.
The keys for further advances in the application of enhanced near-fields to scientific and technological (analytical) tasks include the optimization of tips, excitation and collection optics as well as of imaging techniques. Last but not least, it is necessary to achieve a deeper theoretical understanding of the optical properties of the cavity formed between tip and substrate as well as of the influence of (light-absorbing) adsorbates on the optical resonances of this cavity.
Keywords
Raman Spectroscopy Raman Scattering Brilliant Cresyl Blue Resonance Raman Scattering TERS ExperimentPreview
Unable to display preview. Download preview PDF.
References
- [1]G. Binning, H. Rohrer, C. Gerber, et al.: Phys. Rev. Lett. 49, 57 (1982)CrossRefADSGoogle Scholar
- [2]P. K. Hansma (Ed.): Tunneling Spectroscopy: Capabilities, Applications, and New Technologies (Plenum, New York 1982)Google Scholar
- [3]G. Binning, N. Garcia, H. Rohrer: Phys. Rev. B 32, 1336 (1985)CrossRefADSGoogle Scholar
- [4]H. K. Wickramasinghe: Acta Mater 48, 347 (2000)CrossRefGoogle Scholar
- [5]B. C. Stipe, M. A. Rezai, W. Ho: Science 280, 1732 (1998)CrossRefADSGoogle Scholar
- [6]J. I. Pascual, J. Gómez-Herrero, D. Sánchez-Portal, et al.: J. Chem. Phys. 117, 9531 (2002)CrossRefADSGoogle Scholar
- [7]K. Kneipp, Y. Wang, H. Kneipp, et al.: Phys. Rev. Lett. 78, 1667 (1997)CrossRefADSGoogle Scholar
- [8]S. M. Nie, S. R. Emory: Science 275, 1102 (1997)CrossRefGoogle Scholar
- [9]A. Campion, P. Kambhampati: Chem. Soc. Rev. 27, 241 (1998)CrossRefGoogle Scholar
- [10]K. Kneipp, H. Kneipp, I. Itzkan, et al.: Chem. Rev. 99, 2957 (1999)CrossRefGoogle Scholar
- [11]A. M. Michaels, J. Jiang, L. Brus: J. Phys. Chem. B 104, 11965 (2000)CrossRefGoogle Scholar
- [12]M. Fleischmann, P. J. Hendra, A. J. Mcquillan: Chem. Phys. Lett. 26, 163 (1974)CrossRefADSGoogle Scholar
- [13]D. L. Jeanmaire, R. P. Van Duyne: J. Electroanal. Chem. 84, 1 (1977)CrossRefGoogle Scholar
- [14]M. Moskovits, L. L. Tay, J. Yang, T. Haslett: SERS and the single molecule, in V. M. Shalaev (Ed.): Optical Properties of Nanostructured Random Media (Springer, Berlin, Heidelberg 2002) pp. 215–226CrossRefGoogle Scholar
- [15]A. Otto, I. Mrozek, H. Grabhorn, et al.: J. Phys. Condens. Matter 4, 1143 (1992)CrossRefADSGoogle Scholar
- [16]V. M. Shalaev: Optical nonlinearities of fractal composites, in V. M. Shalaev (Ed.): Optical Properties of Nanostructured Random Media (Springer, Berlin, Heidelberg 2002) pp. 93–112CrossRefGoogle Scholar
- [17]V. A. Markel, V. M. Shalaev, P. Zhang, et al.: Phys. Rev. B 59, 10903 (1999)CrossRefADSGoogle Scholar
- [18]M. Moskovits, D. H. Jeong: Chem. Phys. Lett. 397, 91 (2004)CrossRefADSGoogle Scholar
- [19]J. I. Gersten, A. Nitzan: Electromagnetic theory: A spheroidal model, in R. K. Chang, T. E. Furtak (Eds.): Surface Enhanced Raman Scattering (Plenum, New York 1982) p. 89Google Scholar
- [20]V. M. Shalaev, A. K. Sarychev: Phys. Rev. B 57, 13265 (1998)CrossRefADSGoogle Scholar
- [21]N. Hayazawa, Y. Inouye, Z. Sekhat, et al.: J. Chem. Phys. 117, 1296 (2002)CrossRefADSGoogle Scholar
- [22]R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi: Chem. Phys. Lett. 318, 131 (2000)CrossRefADSGoogle Scholar
- [23]M. S. Anderson: Appl. Phys. Lett. 76, 3130 (2000)CrossRefADSGoogle Scholar
- [24]N. Hayazawa, Y. Inouye, Z. Sekkat, et al.: Opt. Commun. 183, 333 (2000)CrossRefADSGoogle Scholar
- [25]B. Pettinger, G. Picardi, R. Schuster, et al.: Electrochem. Jpn. 68, 942 (2000)Google Scholar
- [26]L. T. Nieman, G. M. Krampert, R. E. Martinez: Rev. Sci. Instrum. 72, 1691 (2001)CrossRefADSGoogle Scholar
- [27]B. Pettinger, G. Picardi, R. Schuster, et al.: Single Molec. 3, 285 (2002)CrossRefADSGoogle Scholar
- [28]A. Hartschuh, E. J. Sanchez, X. S. Xie, et al.: Phys. Rev. Lett. 90, 95503 (2003)CrossRefADSGoogle Scholar
- [29]N. Hayazawa, T. Yano, H. Watanabe, et al.: Chem. Phys. Lett. 376, 174 (2003)CrossRefADSGoogle Scholar
- [30]M. Micic, N. Klymyshyn, Y. D. Suh, et al.: J. Phys. Chem. B 107, 1574 (2003)CrossRefGoogle Scholar
- [31]D. Hu, M. Micic, N. Klymyshyn, et al.: Rev. Sci. Instrum. 74, 3347 (2003)CrossRefADSGoogle Scholar
- [32]B. Pettinger, G. Picardi, R. Schuster, et al.: J. Electroanal. Chem. 554, 293 (2003)CrossRefGoogle Scholar
- [33]B. Pettinger, B. Ren, G. Picardi, R. Schuster, et al.: Phys. Rev. Lett. 92, 96101 (2004)CrossRefADSGoogle Scholar
- [34]B. Ren, G. Picardi, B. Pettinger: Rev. Sci. Instrum. 75, 837 (2004)CrossRefADSGoogle Scholar
- [35]T. Watanabe, B. Pettinger: Chem. Phys. Lett. 89, 501 (1982)CrossRefADSGoogle Scholar
- [36]K. Kneipp, G. Hinzmann, D. Fassler: Chem. Phys. Lett. 99, 503 (1983)CrossRefADSGoogle Scholar
- [37]K. Kneipp, D. Fassler: Chem. Phys. Lett. 106, 498 (1984)CrossRefADSGoogle Scholar
- [38]B. Pettinger, A. Gerolymatou: Ber. Buns.-Gesellsch. Physik. Chem. 88, 359 (1984)Google Scholar
- [39]B. Pettinger, K. Krischer: J. Electr. Spectrosc. Relat. Phenom. 45, 133 (1987)CrossRefGoogle Scholar
- [40]B. Pettinger, K. Krischer, G. Ertl: Chem. Phys. Lett. 151, 151 (1988)CrossRefADSGoogle Scholar
- [41]K. Kneipp, Y. Wang, R. R. Dasari, et al.: Appl. Spectrosc. 49, 780 (1995)CrossRefADSGoogle Scholar
- [42]H. W. Schrötter, H. W. Klöckner: Raman Spectroscopy of Gases and Liquids (Springer, Berlin, Heidelberg 1979) p. 123Google Scholar
- [43]M. R. Kagan, R. L. McCreery: Langmuir 11, 4041 (1995)CrossRefGoogle Scholar
- [44]M. D. Morris, D. J. Wallan: Anal. Chem. 51, 182 A (1979)CrossRefGoogle Scholar
- [45]H. X. Xu, J. Aizpurua, M. Kall, et al.: Phys. Rev. E 62, 4318 (2000)CrossRefADSGoogle Scholar
- [46]R. Stöckle, C. Fokas, V. Deckert, et al.: Appl. Phys. Lett. 75, 160 (1999)CrossRefADSGoogle Scholar
- [47]M. S. Anderson, W. T. Pike: Rev. Sci. Instrum. 73, 1198 (2002)CrossRefADSGoogle Scholar
- [48]F. Demming, J. Jersch, K. Dickmann, et al.: Appl. Phys. B 66, 593 (1998)CrossRefADSGoogle Scholar
- [49]D. L. Mills: Phys. Rev. B 65, 125419 (2002)CrossRefADSGoogle Scholar
- [50]R. W. Rendell, D. J. Scalapino, B. Mühlschlegel: Phys. Rev. Lett. 25, 1746 (1978)CrossRefADSGoogle Scholar
- [51]J. Clavilier, R. Faure, G. Guinet, et al.: J. Electroanal. Chem. 107, 205 (1980)CrossRefGoogle Scholar
- [52]B. Pettinger, B. Ren, G. Picardi, et al.: J. Raman Spectrosc. 36, 541 (2005)CrossRefADSGoogle Scholar
- [53]D. Zhang, K. F. Domke, B. Pettinger: Chem. Phys. Lett. (to be publ. 2006)Google Scholar
- [54]B. Ren, G. Picardi, B. Pettinger, et al.: Angew. Chem. Int. Ed. 44, 139 (2005)CrossRefGoogle Scholar
- [55]T. Ichimura, N. Hayazawa, M. Hashimoto, et al.: Phys. Rev. Lett. 92, 220801 (2004)CrossRefADSGoogle Scholar
- [56]F. Keilmann, R. Hillenbrand: Philos. Trans. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362, 787 (2004)CrossRefADSGoogle Scholar
- [57]A. Hartschuh, M. R. Beversluis, A. Bouhelier, et al.: Philos. Trans. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362, 807 (2004)CrossRefADSGoogle Scholar
- [58]D. S. Bulgarevich, M. Futamata: Appl. Spectrosc. 58, 757 (2004)CrossRefADSGoogle Scholar
- [59]D. Mehtani, N. Lee, R. D. Hartschuh, et al.: J. Raman Spectrosc. 36, 1068 (2005)CrossRefADSGoogle Scholar
- [60]M. B. Raschke, L. Molina, T. Elsaesser, et al.: Chem. Phys. Chem. 6, 2197 (2005)Google Scholar
- [61]L. Billot, L. Berguiga, M. L. De La Chapelle, et al.: Eur. Phys. J. Appl. Phys. 31, 139 (2005)CrossRefADSGoogle Scholar
- [62]Y. Saito, T. Murakami, Y. Inouye, et al.: Chem. Lett. 34, 920 (2005)CrossRefGoogle Scholar
- [63]F. Festy, A. Demming, D. Richards: Ultramicroscopy 100, 437 (2004)CrossRefGoogle Scholar
- [64]A. L. Demming, F. Festy, D. Richards: J. Chem. Phys. 122, 184716 (2005)CrossRefADSGoogle Scholar
- [65]I. Notingher, A. Elfick: J. Phys. Chem. B 109, 15699 (2005)CrossRefGoogle Scholar
- [66]S. Wu, D. L. Mills: Phys. Rev. B 65, 205420 (2002)CrossRefADSGoogle Scholar