Advertisement

Tip-Enhanced Raman Spectroscopy (TERS)

  • Bruno Pettinger
Part of the Topics in Applied Physics book series (TAP, volume 103)

3 Conclusion/Outlook

Tip-enhanced Raman spectroscopy is a vibrational spectroscopy with hitherto unprecedented sensitivity and spatial resolution. Since the enhancement is mainly provided by the near-field excited at the apex of a suitable tip, TERS appears to be a widely applicable spectroscopy and microscopy tool, in contrast to its parents, surface-enhanced Raman spectroscopy (SERS) and scanning near-field optical microscopy (SNOM). TER scattering has been observed for a number of molecules adsorbed at various substrates, including single-crystalline metal surfaces, showing thereby a more than million-fold enhancement of the Raman scattering. It is important to note that the field-enhancement provides, beyond TERS, promising avenues for applications to other optical techniques, such as tip-enhanced CARS, two-photon fluorescence and infrared scattering-type near-field microscopy.

Common to all these approaches is the high spatial resolution that is by far better than Abbe’s diffraction limit of λ/2. The lateral resolution achieved today is in the range of 10 nm to 20 nm. Optical microscopy with such an excellent resolution has a very promising future.

The keys for further advances in the application of enhanced near-fields to scientific and technological (analytical) tasks include the optimization of tips, excitation and collection optics as well as of imaging techniques. Last but not least, it is necessary to achieve a deeper theoretical understanding of the optical properties of the cavity formed between tip and substrate as well as of the influence of (light-absorbing) adsorbates on the optical resonances of this cavity.

Keywords

Raman Spectroscopy Raman Scattering Brilliant Cresyl Blue Resonance Raman Scattering TERS Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Binning, H. Rohrer, C. Gerber, et al.: Phys. Rev. Lett. 49, 57 (1982)CrossRefADSGoogle Scholar
  2. [2]
    P. K. Hansma (Ed.): Tunneling Spectroscopy: Capabilities, Applications, and New Technologies (Plenum, New York 1982)Google Scholar
  3. [3]
    G. Binning, N. Garcia, H. Rohrer: Phys. Rev. B 32, 1336 (1985)CrossRefADSGoogle Scholar
  4. [4]
    H. K. Wickramasinghe: Acta Mater 48, 347 (2000)CrossRefGoogle Scholar
  5. [5]
    B. C. Stipe, M. A. Rezai, W. Ho: Science 280, 1732 (1998)CrossRefADSGoogle Scholar
  6. [6]
    J. I. Pascual, J. Gómez-Herrero, D. Sánchez-Portal, et al.: J. Chem. Phys. 117, 9531 (2002)CrossRefADSGoogle Scholar
  7. [7]
    K. Kneipp, Y. Wang, H. Kneipp, et al.: Phys. Rev. Lett. 78, 1667 (1997)CrossRefADSGoogle Scholar
  8. [8]
    S. M. Nie, S. R. Emory: Science 275, 1102 (1997)CrossRefGoogle Scholar
  9. [9]
    A. Campion, P. Kambhampati: Chem. Soc. Rev. 27, 241 (1998)CrossRefGoogle Scholar
  10. [10]
    K. Kneipp, H. Kneipp, I. Itzkan, et al.: Chem. Rev. 99, 2957 (1999)CrossRefGoogle Scholar
  11. [11]
    A. M. Michaels, J. Jiang, L. Brus: J. Phys. Chem. B 104, 11965 (2000)CrossRefGoogle Scholar
  12. [12]
    M. Fleischmann, P. J. Hendra, A. J. Mcquillan: Chem. Phys. Lett. 26, 163 (1974)CrossRefADSGoogle Scholar
  13. [13]
    D. L. Jeanmaire, R. P. Van Duyne: J. Electroanal. Chem. 84, 1 (1977)CrossRefGoogle Scholar
  14. [14]
    M. Moskovits, L. L. Tay, J. Yang, T. Haslett: SERS and the single molecule, in V. M. Shalaev (Ed.): Optical Properties of Nanostructured Random Media (Springer, Berlin, Heidelberg 2002) pp. 215–226CrossRefGoogle Scholar
  15. [15]
    A. Otto, I. Mrozek, H. Grabhorn, et al.: J. Phys. Condens. Matter 4, 1143 (1992)CrossRefADSGoogle Scholar
  16. [16]
    V. M. Shalaev: Optical nonlinearities of fractal composites, in V. M. Shalaev (Ed.): Optical Properties of Nanostructured Random Media (Springer, Berlin, Heidelberg 2002) pp. 93–112CrossRefGoogle Scholar
  17. [17]
    V. A. Markel, V. M. Shalaev, P. Zhang, et al.: Phys. Rev. B 59, 10903 (1999)CrossRefADSGoogle Scholar
  18. [18]
    M. Moskovits, D. H. Jeong: Chem. Phys. Lett. 397, 91 (2004)CrossRefADSGoogle Scholar
  19. [19]
    J. I. Gersten, A. Nitzan: Electromagnetic theory: A spheroidal model, in R. K. Chang, T. E. Furtak (Eds.): Surface Enhanced Raman Scattering (Plenum, New York 1982) p. 89Google Scholar
  20. [20]
    V. M. Shalaev, A. K. Sarychev: Phys. Rev. B 57, 13265 (1998)CrossRefADSGoogle Scholar
  21. [21]
    N. Hayazawa, Y. Inouye, Z. Sekhat, et al.: J. Chem. Phys. 117, 1296 (2002)CrossRefADSGoogle Scholar
  22. [22]
    R. M. Stöckle, Y. D. Suh, V. Deckert, R. Zenobi: Chem. Phys. Lett. 318, 131 (2000)CrossRefADSGoogle Scholar
  23. [23]
    M. S. Anderson: Appl. Phys. Lett. 76, 3130 (2000)CrossRefADSGoogle Scholar
  24. [24]
    N. Hayazawa, Y. Inouye, Z. Sekkat, et al.: Opt. Commun. 183, 333 (2000)CrossRefADSGoogle Scholar
  25. [25]
    B. Pettinger, G. Picardi, R. Schuster, et al.: Electrochem. Jpn. 68, 942 (2000)Google Scholar
  26. [26]
    L. T. Nieman, G. M. Krampert, R. E. Martinez: Rev. Sci. Instrum. 72, 1691 (2001)CrossRefADSGoogle Scholar
  27. [27]
    B. Pettinger, G. Picardi, R. Schuster, et al.: Single Molec. 3, 285 (2002)CrossRefADSGoogle Scholar
  28. [28]
    A. Hartschuh, E. J. Sanchez, X. S. Xie, et al.: Phys. Rev. Lett. 90, 95503 (2003)CrossRefADSGoogle Scholar
  29. [29]
    N. Hayazawa, T. Yano, H. Watanabe, et al.: Chem. Phys. Lett. 376, 174 (2003)CrossRefADSGoogle Scholar
  30. [30]
    M. Micic, N. Klymyshyn, Y. D. Suh, et al.: J. Phys. Chem. B 107, 1574 (2003)CrossRefGoogle Scholar
  31. [31]
    D. Hu, M. Micic, N. Klymyshyn, et al.: Rev. Sci. Instrum. 74, 3347 (2003)CrossRefADSGoogle Scholar
  32. [32]
    B. Pettinger, G. Picardi, R. Schuster, et al.: J. Electroanal. Chem. 554, 293 (2003)CrossRefGoogle Scholar
  33. [33]
    B. Pettinger, B. Ren, G. Picardi, R. Schuster, et al.: Phys. Rev. Lett. 92, 96101 (2004)CrossRefADSGoogle Scholar
  34. [34]
    B. Ren, G. Picardi, B. Pettinger: Rev. Sci. Instrum. 75, 837 (2004)CrossRefADSGoogle Scholar
  35. [35]
    T. Watanabe, B. Pettinger: Chem. Phys. Lett. 89, 501 (1982)CrossRefADSGoogle Scholar
  36. [36]
    K. Kneipp, G. Hinzmann, D. Fassler: Chem. Phys. Lett. 99, 503 (1983)CrossRefADSGoogle Scholar
  37. [37]
    K. Kneipp, D. Fassler: Chem. Phys. Lett. 106, 498 (1984)CrossRefADSGoogle Scholar
  38. [38]
    B. Pettinger, A. Gerolymatou: Ber. Buns.-Gesellsch. Physik. Chem. 88, 359 (1984)Google Scholar
  39. [39]
    B. Pettinger, K. Krischer: J. Electr. Spectrosc. Relat. Phenom. 45, 133 (1987)CrossRefGoogle Scholar
  40. [40]
    B. Pettinger, K. Krischer, G. Ertl: Chem. Phys. Lett. 151, 151 (1988)CrossRefADSGoogle Scholar
  41. [41]
    K. Kneipp, Y. Wang, R. R. Dasari, et al.: Appl. Spectrosc. 49, 780 (1995)CrossRefADSGoogle Scholar
  42. [42]
    H. W. Schrötter, H. W. Klöckner: Raman Spectroscopy of Gases and Liquids (Springer, Berlin, Heidelberg 1979) p. 123Google Scholar
  43. [43]
    M. R. Kagan, R. L. McCreery: Langmuir 11, 4041 (1995)CrossRefGoogle Scholar
  44. [44]
    M. D. Morris, D. J. Wallan: Anal. Chem. 51, 182 A (1979)CrossRefGoogle Scholar
  45. [45]
    H. X. Xu, J. Aizpurua, M. Kall, et al.: Phys. Rev. E 62, 4318 (2000)CrossRefADSGoogle Scholar
  46. [46]
    R. Stöckle, C. Fokas, V. Deckert, et al.: Appl. Phys. Lett. 75, 160 (1999)CrossRefADSGoogle Scholar
  47. [47]
    M. S. Anderson, W. T. Pike: Rev. Sci. Instrum. 73, 1198 (2002)CrossRefADSGoogle Scholar
  48. [48]
    F. Demming, J. Jersch, K. Dickmann, et al.: Appl. Phys. B 66, 593 (1998)CrossRefADSGoogle Scholar
  49. [49]
    D. L. Mills: Phys. Rev. B 65, 125419 (2002)CrossRefADSGoogle Scholar
  50. [50]
    R. W. Rendell, D. J. Scalapino, B. Mühlschlegel: Phys. Rev. Lett. 25, 1746 (1978)CrossRefADSGoogle Scholar
  51. [51]
    J. Clavilier, R. Faure, G. Guinet, et al.: J. Electroanal. Chem. 107, 205 (1980)CrossRefGoogle Scholar
  52. [52]
    B. Pettinger, B. Ren, G. Picardi, et al.: J. Raman Spectrosc. 36, 541 (2005)CrossRefADSGoogle Scholar
  53. [53]
    D. Zhang, K. F. Domke, B. Pettinger: Chem. Phys. Lett. (to be publ. 2006)Google Scholar
  54. [54]
    B. Ren, G. Picardi, B. Pettinger, et al.: Angew. Chem. Int. Ed. 44, 139 (2005)CrossRefGoogle Scholar
  55. [55]
    T. Ichimura, N. Hayazawa, M. Hashimoto, et al.: Phys. Rev. Lett. 92, 220801 (2004)CrossRefADSGoogle Scholar
  56. [56]
    F. Keilmann, R. Hillenbrand: Philos. Trans. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362, 787 (2004)CrossRefADSGoogle Scholar
  57. [57]
    A. Hartschuh, M. R. Beversluis, A. Bouhelier, et al.: Philos. Trans. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362, 807 (2004)CrossRefADSGoogle Scholar
  58. [58]
    D. S. Bulgarevich, M. Futamata: Appl. Spectrosc. 58, 757 (2004)CrossRefADSGoogle Scholar
  59. [59]
    D. Mehtani, N. Lee, R. D. Hartschuh, et al.: J. Raman Spectrosc. 36, 1068 (2005)CrossRefADSGoogle Scholar
  60. [60]
    M. B. Raschke, L. Molina, T. Elsaesser, et al.: Chem. Phys. Chem. 6, 2197 (2005)Google Scholar
  61. [61]
    L. Billot, L. Berguiga, M. L. De La Chapelle, et al.: Eur. Phys. J. Appl. Phys. 31, 139 (2005)CrossRefADSGoogle Scholar
  62. [62]
    Y. Saito, T. Murakami, Y. Inouye, et al.: Chem. Lett. 34, 920 (2005)CrossRefGoogle Scholar
  63. [63]
    F. Festy, A. Demming, D. Richards: Ultramicroscopy 100, 437 (2004)CrossRefGoogle Scholar
  64. [64]
    A. L. Demming, F. Festy, D. Richards: J. Chem. Phys. 122, 184716 (2005)CrossRefADSGoogle Scholar
  65. [65]
    I. Notingher, A. Elfick: J. Phys. Chem. B 109, 15699 (2005)CrossRefGoogle Scholar
  66. [66]
    S. Wu, D. L. Mills: Phys. Rev. B 65, 205420 (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bruno Pettinger
    • 1
  1. 1.Fritz Haber Institute of the Max Planck SocietyBerlinGermany

Personalised recommendations