Advertisement

Abstract

In this contribution I will review some basic results on elliptic boundary value problems with applications to General Relativity.

Keywords

Dirichlet Problem Dirichlet Boundary Condition Null Space Elliptic System Neumann Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Agmon, A. Douglis, L. Nirenberg: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure App. Math. 12, 623–727 (1959)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Agmon, A. Douglis, L. Nirenberg: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Comm. Pure App. Math. 17, 35–92 (1964)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    M.S. Agranovich: Elliptic boundary problems. In: Partial Differential Equations, IX, volume 79 of Encyclopaedia Math. Sci. (Springer, Berlin 1997) pp 1–144Google Scholar
  4. 4.
    R. Bartnik, J. Isenberg: The constraint equations. In: The Einstein Equations and Large Scale Behavior of Gravitational Fields, ed by P.T. Chruściel and H. Friedrich (Birhäuser, Basel 2004) pp 1–38. gr-qc/0405092Google Scholar
  5. 5.
    F.E. Browder: Estimates and existence theorems for elliptic boundary value problems. Proc. Nat. Acad. Sci. U.S.A. 45, 365–372 (1959)zbMATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    P.T. Chruściel, E. Delay: On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. (2003) gr-qc/0301073Google Scholar
  7. 7.
    J. Corvino, R. M. Schoen: On the asymptotics for the vacuum Einstein constraint equations. (2003) gr-qc/0301071Google Scholar
  8. 8.
    S. Dain: Trapped surfaces as boundaries for the constraint equations. Class. Quantum. Grav. 21(2), 555–573 (2004) gr-qc/0308009zbMATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    A. Douglis, L. Nirenberg: Interior estimates for elliptic systems of partial differential equations. Comm. Pure App. Math. 8, 503–538 (1955)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    L.C. Evans: Partial Differential Equations, volume 19 of Graduate Studies in Mathematics (American Mathematical Society, Providence, Rhode Island 1998)Google Scholar
  11. 11.
    G.B. Folland: Introduction to Partial Differential Equation (Princeton University Press, Princeton, New Jersey 1995)Google Scholar
  12. 12.
    M. Giaquinta: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, volume 105 of Annals of Mathematics Studies. (Princeton University Press, Princeton, New Jersey 1983)Google Scholar
  13. 13.
    M. Giaquinta: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Lectures in Mathematics, ETH Zürich (Birkhäuser, Basel 1993)zbMATHGoogle Scholar
  14. 14.
    D. Gilbarg, N.S. Trudinger: Elliptic Partial Differential Equations of Second Order (Springer, Berlin 1983)zbMATHGoogle Scholar
  15. 15.
    L. Hörmander: Linear Partial Differential Operators, volume 116 of Grundlehren der Mathematischen Wissenschaften (Academic Press, New York 1963)Google Scholar
  16. 16.
    L. Hörmander: The Analysis of Linear Partial Differential Operators. III, volume 274 of Grundlehren der Mathematischen Wissenschaften (Springer, Berlin 1985)Google Scholar
  17. 17.
    L. Hormander: The Analysis of Linear Partial Differential Operators. IV, volume 275 of Grundlehren der Mathematischen Wissenschaften (Springer, Berlin 1985)Google Scholar
  18. 18.
    T. Kato: Perturbation Theory for Linear Operators, volume 132 of Grundlehren der Mathematischen Wissenschaften. (Springer, Berlin 1980)Google Scholar
  19. 19.
    J.L. Lions, E. Magenes: Non-Homogeneous Boundary Value Problems and Applications., volume 181 of Grundlehren der Mathematischen Wissenschaften (Springer, New York 1972)Google Scholar
  20. 20.
    J. E. Marsden, T. J. Hughes: Mathematical Foundations of Elasticity, Prentice-Hall Civil Engineering and Engineering Mechanics Series (Prentice Hall, Englewood Cliffs, New Jersey 1983)zbMATHGoogle Scholar
  21. 21.
    D. Maxwell: Solutions of the Einstein constraint equations with apparent horizon boundary. (2003) gr-qc/0307117Google Scholar
  22. 22.
    R. C. McOwen: Partial Differential Equations (Prentice Hall, Englewood Cliffs, New Jersey 1996)zbMATHGoogle Scholar
  23. 23.
    P. Miao: On existence of static metric extensions in general relativity. Commun. Math. Phys. 241(1), 27–46 (2003)zbMATHMathSciNetADSGoogle Scholar
  24. 24.
    L. Nirenberg: Remarks on strongly elliptic partial differential equations. Comm. Pure App. Math. 8, 649–675 (1955)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    L. Nirenberg: Estimates and existence of solutions of elliptic equations. Comm. Pure App. Math. 9. 509–529 (1956)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    T. Parker, C. H. Taubes: On Witten's proof of the positive energy theorem. Comm. Math. Phys. 84(2), 223–238 (1982)zbMATHMathSciNetCrossRefADSGoogle Scholar
  27. 27.
    P.R. Popivanov, D.K. Palagachev: The degenerate oblique derivative problem for elliptic and parabolic equations, volume 93 of Mathematical Research (Akademie-Verlag, Berlin 1997)Google Scholar
  28. 28.
    M. Renardy, R. C. Rogers: An Introduction to Partial Differential Equations, 2nd edn, volume 13 of Texts in Applied Mathematics (Springer, New York 2004)Google Scholar
  29. 29.
    O. Reula: Existence theorem for solutions of Witten's equation and nonnegativity of total mass. J. Math. Phys. 23(5), 810–814 (1982)zbMATHMathSciNetCrossRefADSGoogle Scholar
  30. 30.
    O. Reula: On existence and behaviour of asymptotically flat solutions to the stationary Einstein equations. Commun. Math. Phys. 122, 615–624 (1989)zbMATHMathSciNetCrossRefADSGoogle Scholar
  31. 31.
    O. Reula, K. P. Tod: Positivity of the Bondi energy. J. Math. Phys. 25(4), 1004–1008 (1984)MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    M. Schechter: General boundary-value problems for elliptic partial differential equations. Comm. Pure Appl. Math. 12, 457–486 (1959)zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    L. Smarr, J. York: Radiation gauge in general relativity. Phys. R.ev. D 17, 1945–1956 (1978)MathSciNetCrossRefADSGoogle Scholar
  34. 34.
    H. Sohr: The Navier-Stokes equations. Birkhäuser Advanced Texts (Birkhäuser, Basel 2001)zbMATHGoogle Scholar
  35. 35.
    M.E. Taylor: Partial Differential Equations. I, volume 115 of Applied Mathematical Sciences (Springer, New York 1996)Google Scholar
  36. 36.
    J.L. Thompson: Some existence theorems for the traction boundary-value problem of linearized elastostatics. Arch. Rational Mech. Anal. 32, 369–399 (1969)zbMATHMathSciNetCrossRefADSGoogle Scholar
  37. 37.
    E. Witten: A new proof of the positive energy theorem. Comm. Math. Phys. 80(3), 381–402 (1981)zbMATHMathSciNetCrossRefADSGoogle Scholar
  38. 38.
    J.T. Wloka, B. Rowley, B. Lawruk: Boundary Value Problems for Elliptic Systems (Cambridge University Press, Cambridge 1995)zbMATHCrossRefGoogle Scholar
  39. 39.
    J.W. York: Conformally invariant orthogonal decomposition of symmetric tensor on Riemannian manifolds and the initial-value problem of general relativity. J. Math. Phys. 14(4), 456–464 (1973)zbMATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Sergio Dain
    • 1
  1. 1.Max-Planck-Institut für GravitationsphysikGolmGermany

Personalised recommendations