Advertisement

On Additivity Questions

  • Keiji Matsumoto
Part of the Topics in Applied Physics book series (TAP, volume 102)

Keywords

Pure State Quantum Channel Bloch Sphere Optimal Ensemble Noisy Quantum Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. G. H. Vollbrecht, R. F. Werner: Entanglement measures under symmetry, Phys. Rev. A 64, 062307 (2001)CrossRefADSGoogle Scholar
  2. [2]
    K. Matsumoto, T. Shimono, A. Winter: Remarks on additivity of the Holevo channel capacity and of the entanglement of formation, Commun. Math. Phys. 246, 427–442 (2004)zbMATHMathSciNetCrossRefADSGoogle Scholar
  3. [3]
    K. Matsumoto: Yet another additivity conjecture, Phys. Lett. A 350, 179–181 (2006)CrossRefADSzbMATHGoogle Scholar
  4. [4]
    P. W. Shor: Equivalence of additivity questions in quantum information theory, Commun. Math. Phys. 246, 453–472 (2004)zbMATHMathSciNetCrossRefADSGoogle Scholar
  5. [5]
    T. Shimono: Lower bound for entanglement cost of antisymmetric states (2002) URL http://lanl.arxiv.org/abs/quant-ph/0203039Google Scholar
  6. [6]
    T. Shimono: Towards additivity of entanglement of formation, in C. Calude, M. J. Dinneen, F. Peper (Eds.): Proc. Third International Conference on Unconventional Models of Computation, LNCS 2509 (Springer 2002) pp. 252–263Google Scholar
  7. [7]
    F. Yura: Entanglement cost of three-level antisymmetric states, J. Phys. A: Math. Gen. 36, L237–L242 (2003)zbMATHMathSciNetCrossRefADSGoogle Scholar
  8. [8]
    K. Matsumoto, F. Yura: Entanglement cost of antisymmetric states and additivity of capacity of some quantum channels, J. Phys. A 37, L167 (2004) URL http://lanl.arxiv.org/abs/quant-ph/0306009zbMATHMathSciNetCrossRefADSGoogle Scholar
  9. [9]
    T. Shimono: Additivity of entanglement of formation of two three-level-antisymmetric states, Int. J. Quant. Inform. 1, 259–267 (2003)zbMATHCrossRefGoogle Scholar
  10. [10]
    H. Fan: Additivity of entanglement of formation for some special cases (2002) URL http://lanl.arxiv.org/abs/quant-ph/0210169Google Scholar
  11. [11]
    T. Hiroshima: Additivity and multiplicativity properties of some Gaussian channels for Gaussian inputs, Phys. Rev. A 73 (2006)Google Scholar
  12. [12]
    M. Hayashi, H. Imai, K. Matsumoto, M. B. Ruskai, T. Shimono: Qubit channels which require four inputs to achieve capacity: Implications for additivity conjectures, Quantum Inf. Comput. 5, 13–31 (2005)MathSciNetzbMATHGoogle Scholar
  13. [13]
    T. Shimono, H. Fan: Numerical test of superadditivity of entanglement of formation for 4 qubit states, in Third Erato Conference on Quantum Information Science poster session (2003) p. 119Google Scholar
  14. [14]
    A. S. Holevo: The capacity of the quantum channel with general signal states, IEEE Trans. Inf. Theory 44, 269–273 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    B. Schumacher, M. D. Westmoreland: Sending classical information via noisy quantum channels, Phys. Rev. A 56, 131–138 (1997)CrossRefADSGoogle Scholar
  16. [16]
    E. B. Davies: Information and quantum measurements, IEEE Trans. Inf. Theory 24, 596–599 (1978)zbMATHCrossRefGoogle Scholar
  17. [17]
    A. Fujiwara, H. Nagaoka: Operational capacity and pseudoclassicality of a quantum channel, IEEE Trans. Inf. Theory 44, 1071–1086 (1988)MathSciNetCrossRefGoogle Scholar
  18. [18]
    A. S. Holevo: Problems in the mathematical theory of quantum communication channels, Rep. Math. Phys. 12, 273–278 (1979)MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    C. H. Bennett, C. A. Fuchs, J. A. Smolin: Entanglement-enhanced classical communication on a noisy quantum channel, in O. Hirota, A. S. Holevo, C. M. Caves (Eds.): Quantum Communication, Computing and Measurement (Plenum, New York 1997) pp. 79–88Google Scholar
  20. [20]
    S. Osawa, H. Nagaoka: Theoretical basis and applications of the quantum Arimoto-Blahut algorithms, in Proc. the 2nd Workshop on Quantum Information Technologies (1999) pp. 107–112Google Scholar
  21. [21]
    S. Osawa, H. Nagaoka: Numerical experiments on the capacity of quantum channel with entangled input states, IEICE Trans. Fundamentals E84-A, 2583–2590 (2001)Google Scholar
  22. [22]
    G. Amosov, A. S. Holevo, R. F. Werner: On the additivity hypothesis in quantum information theory, Problemy Peredachi Informatsii 36, 25–34 (2000) in Russian. English translation in Probl. Inf. Transm. 4, pp. 305–313 (2000)zbMATHGoogle Scholar
  23. [23]
    G. G. Amosov, A. S. Holevo: On the multiplicativity conjecture for quantum channels, Theor. Probab. Appl. 47, 143–146 (2002)zbMATHGoogle Scholar
  24. [24]
    D. Bruss, L. Faoro, C. Macchiavello, M. Palma: Quantum entanglement and classical communication through a depolarizing channel, J. Mod. Optics 47, 325–331 (2000)MathSciNetCrossRefADSGoogle Scholar
  25. [25]
    C. King, M. B. Ruskai: Minimal entropy of states emerging from noisy quantum channels, IEEE Trans. Inf. Theory 47, 192–209 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Fujiwara, T. Hashizume: Additivity of the capacity of depolarizing channels, Phys. Lett. A 299, 469–475 (2002)zbMATHMathSciNetCrossRefADSGoogle Scholar
  27. [27]
    C. King: Maximization of capacity and ℓp norms for some product channels, J. Math. Phys. 43, 1247–1260 (2002)zbMATHMathSciNetCrossRefADSGoogle Scholar
  28. [28]
    C. King: Additivity for unital qubit channels, J. Math. Phys. 43, 4641–4653 (2002)zbMATHMathSciNetCrossRefADSGoogle Scholar
  29. [29]
    P. W. Shor: Additivity of the classical capacity of entanglement-breaking quantum channels, J. Math. Phys. 43, 4334–4340 (2002)zbMATHMathSciNetCrossRefADSGoogle Scholar
  30. [30]
    C. King: The capacity of the quantum depolarizing channel (2002) URL http://lanl.arxiv.org/abs/quant-ph/0204172Google Scholar
  31. [31]
    R. F. Werner, A. S. Holevo: Counterexample to an additivity conjecture for output purity of quantum channels, J. Math. Phys. 43, 4353–4357 (2002)zbMATHMathSciNetCrossRefADSGoogle Scholar
  32. [32]
    A. Fujiwara, P. Algoet: One-to-one parameterization of quantum channels, Phys. Rev. A 59, 3290–3294 (1999)CrossRefADSGoogle Scholar
  33. [33]
    R. F. Werner: All teleportation and dense coding schemes, J. Phys. A 34, 7081–7094 (2001)zbMATHMathSciNetCrossRefADSGoogle Scholar
  34. [34]
    C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, W. K. Wootters: Mixed-state entanglement and quantum error correction, Phys. Rev. A 54, 3824–3851 (1996)MathSciNetCrossRefADSGoogle Scholar
  35. [35]
    G. Vidal: Entanglement cost of mixed states, Phys. Rev. Lett. 89, 027901 (2002)CrossRefADSGoogle Scholar
  36. [36]
    P. M. Hayden, M. Horodecki, B. M. Terhal: The asymptotic entanglement cost of preparing a quantum state, J. Phys. A: Math. Gen. 34, 6891–6898 (2001)zbMATHMathSciNetCrossRefADSGoogle Scholar
  37. [37]
    W. K. Wootters: Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80, 2245–2248 (1998)CrossRefADSGoogle Scholar
  38. [38]
    B. M. Terhal, K. G. H. Vollbrecht: The entanglement of formation for isotropic states, Phys. Rev. Lett. 85, 2625–2628 (2000)CrossRefADSGoogle Scholar
  39. [39]
    F. Benatti, H. Narnhofer: On the additivity of the entanglement of formation, Phys. Rev. A 63, 042306 (2001)CrossRefADSGoogle Scholar
  40. [40]
    W. F. Stinespring: Positive functions on c*-algebras, Proc. Amer. Math. Soc. 6, 211–216 (1955)zbMATHMathSciNetCrossRefGoogle Scholar
  41. [41]
    M. B. Ruskai: Inequalities for quantum entropy: A review with conditions for equality, J. Math. Phys. 43, 4358–4375 (2002)zbMATHMathSciNetCrossRefADSGoogle Scholar
  42. [42]
    K. Kraus: States, Effect and Operations: Fundamental Notions of Quantum Theory (Springer, Berlin, Heidelberg 1983)CrossRefGoogle Scholar
  43. [43]
    A. S. Holevo: On quantum communication channels with constrained inputs (1997) URL http://lanl.arxiv.org/abs/quant-ph/9705054Google Scholar
  44. [44]
    A. Winter: Coding theorem and strong converse for quantum channels, IEEE Trans. Inf. Theory 45, 2481–2485 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  45. [45]
    R. Goodman, N. R. Wallach: Representations and Invariants of the Classical Groups (Cambridge Univ. Press, Cambridge 1998)zbMATHGoogle Scholar
  46. [46]
    R. Alicki, M. Fannes: Note on multiple additivity of minimal output entropy output of extreme su(d)-covariant channels, Open Systems and Information Dynamics 11, 339–342 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  47. [47]
    N. Datta, A. Holevo, Y. Suhov: A quantum channel with additive minimum output entropy (2004) URL http://lanl.arxiv.org/abs/quant-ph/0403072Google Scholar
  48. [48]
    C. King, M. Nathanson, M. B. Ruskai: Qubit channels can require more than two inputs to achieve capacity, Phys. Rev. Lett. 88, 057901 (2002)CrossRefADSGoogle Scholar
  49. [49]
    M. Ohya, D. Petz, N. Watanabe: On capacities of quantum channels, Prob. Math. Stats. 17, 170–196 (1997)MathSciNetGoogle Scholar
  50. [50]
    B. Schumacher, M. D. Westmoreland: Optimal signal ensembles, Phys. Rev. A 63, 022308 (2001)CrossRefADSGoogle Scholar
  51. [51]
    R. T. Rockafellar: Convex Analysis (Princeton Univ. Press, Princeton 1970)zbMATHGoogle Scholar
  52. [52]
    M. B. Ruskai, S. Szarek, E. Werner: An analysis of completely-positive tracepreserving maps on ℳ2, Linear Algebra and its Applications 347, 159–187 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  53. [53]
    H. Nagaoka: Algorithms of Arimoto-Blahut type for computing quantum channel capacity, in Proc. IEEE International Symposium on Information Theory (1998) p. 354Google Scholar
  54. [54]
    H. Imai, M. Hachimori, M. Hamada, H. Kobayashi, K. Matsumoto: Optimization in quantum computation and information, in Proc. of the 2nd Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications (2001) pp. 0–69Google Scholar
  55. [55]
    P. W. Shor: Capacities of quantum channels and how to find them, Mathematical Programming 97, 311–335 (2003)zbMATHMathSciNetGoogle Scholar
  56. [56]
    F. Potra, Y. Ye: A quadratically convergent polynomial algorithm for solving entropy optimization problems, SIAM J. Optim. 3, 843–860 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  57. [57]
    M. S. I. NUOPT.: Technical report URL http://www.msi.co.jp/en/home.htmlGoogle Scholar
  58. [58]
    C. King, M. B. Ruskai: Comments on multiplicativity of p-norms for p = 2, in O. Hirota (Ed.): Quantum Information, Statistics and Probability (Rinton Press 2004) pp. 102–114 URL http://lanl.arxiv.org/abs/quant-ph/0401026Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Keiji Matsumoto
    • 1
    • 2
  1. 1.ERATO Quantum Computation and Information ProjectTokyoJapan
  2. 2.Quantum Information Science GroupNational Institute of InformaticsTokyoJapan

Personalised recommendations