Advertisement

Existential Theory of the Reals

Part of the Algorithms and Computation in Mathematics book series (AACIM, volume 10)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

13.5 Bibliographical Notes

  1. 11.
    S. Basu, On Bounding the Betti Numbers and Computing the Euler Characteristics of Semi-algebraic Sets, Discrete and Computational Geometry, 22 1–18 (1999).zbMATHMathSciNetCrossRefGoogle Scholar
  2. 13.
    S. Basu, R. Pollack, M.-F. Roy, On the Combinatorial and Algebraic Complexity of Quantifier Elimination, Journal of the ACM, 43 1002–1045, (1996).zbMATHMathSciNetCrossRefGoogle Scholar
  3. 15.
    S. Basu, R. Pollack, M.-F. Roy, On Computing a Set of Points meeting every Semi-algebraically Connected Component of a Family of Polynomials on a Variety, Journal of Complexity, March 1997, 13(1), 28–37.zbMATHMathSciNetCrossRefGoogle Scholar
  4. 37.
    J. Canny, Some Algebraic and Geometric Computations in PSPACE, Proc. Twentieth ACM Symp. on Theory of Computing, 460–467, (1988).Google Scholar
  5. 42.
    A. Chistov, H. Fournier, L. Gurvits, P. Koiran, Vandermonde Matrices, NP-Completeness and Transversal Subspaces, Foundations of Computational Mathematics, 3(4) 421–427 (2003).zbMATHMathSciNetCrossRefGoogle Scholar
  6. 77.
    D. Grigor’ev, N. Vorobjov, Solving Systems of Polynomial Inequalities in Subexponential Time, Journal of Symbolic Computation, 5 37–64 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 85.
    J. Heintz, M.-F. Roy, P. Solernò, Sur la complexité du principe de Tarski-Seidenberg, Bull. Soc. Math. France 118 101–126 (1990).zbMATHMathSciNetGoogle Scholar
  8. 133.
    J. Renegar. On the computational complexity and geometry of the first order theory of the reals, Journal of Symbolic Computation, 13: 255–352 (1992).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations