Consistence of the Mean Field Description of Charged Colloidal Crystal Properties

  • Patrick Wette
  • Hans Joachim Schöpe
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 133)

Abstract

The Debye-Hückel-Potential in combination with an effective or renormalized charge is a widely and often successfully used concept to describe the interaction in charged colloidal model systems and the resulting suspension properties. In particular the phase behaviour can be described in dependence of the parameters particle number density, salt concentration and effective charge. We performed simultaneous measurements of the phase behaviour, the shear modulus and the low frequency conductivity of deionised aqueous suspensions of highly charged colloidal spheres. From the shear modulus the interaction potential at the nearest neighbour distance in terms of a Debye-Hückel potential can be determined with an effective charge Z*G as free parameter. Conductivity measures the number of freely moving small ions Z*σ and thus relates to the ion condensation process in the electric double layer under conditions of finite macroion concentrations. We present the first experimental access of the pair energy of interaction in charged colloidal suspensions which describes both the elastic properties and the fluid crystalline phase behaviour. This means that a consistent description of the suspension properties is obtained, when Z*G is taken from the elasticity measurement.

Keywords

Charge spheres Colloids Effective charge Phase behaviour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robbins MO, Kremer K, Grest GS (1988) J Chem Phys 88:3286CrossRefGoogle Scholar
  2. 2.
    Meijer EJ, Frenkel D (1991) J Chem Phys 94:2269CrossRefGoogle Scholar
  3. 3.
    Voegtli LP, Zukoski CF (1991) J Colloid Interface Sci 141:79CrossRefGoogle Scholar
  4. 4.
    Schram PPJM, Trigger SA (1996) Physica B 228:170CrossRefGoogle Scholar
  5. 5.
    Sirota EB et al. (1989) Phys Rev Lett 62:1524CrossRefGoogle Scholar
  6. 6.
    Okubo T (1994) ACS Symposium Series 548:364CrossRefGoogle Scholar
  7. 7.
    Monovoukas Y, Gast AP (1989) J Colloid Interf Sci 128:535Google Scholar
  8. 8.
    Löwen H, Denton AR, Dhont JKG (1999) J Phys Condens Matter 11:10047CrossRefGoogle Scholar
  9. 9.
    Belloni L (2000) J Phys Cond Matter 12:R549CrossRefGoogle Scholar
  10. 10.
    Groot RD (1991) J Chem Phys 94:5083CrossRefGoogle Scholar
  11. 11.
    Stevens MJ, Falk ML, Robbins MO (1996) J Chem Phys 104:5209CrossRefGoogle Scholar
  12. 12.
    Crocker JC, Grier DG (1994) Phys Rev Lett 73:352CrossRefGoogle Scholar
  13. 13.
    Alexander S et al. (1984) J Chem Phys 80:577CrossRefGoogle Scholar
  14. 14.
    v Grünberg HH (2000) J Phys Cond Matter 12:6039CrossRefGoogle Scholar
  15. 15.
    Gisler T et al.(1994) J Chem Phys 101:9924CrossRefGoogle Scholar
  16. 16.
    Belloni L (1998) Colloid Surf A 140:227CrossRefGoogle Scholar
  17. 17.
    Brunner M, Bechinger C, Strepp W, Lobaskin V, von Grünberg HH (2002) Europhys Lett 58:926CrossRefGoogle Scholar
  18. 18.
    Hansen JP, Hayter JB (1982) Molecular Physics 46:651CrossRefGoogle Scholar
  19. 19.
    Taylor TW, Ackerson BJ (1985) J Chem Phys 83:2441CrossRefGoogle Scholar
  20. 20.
    Härtl W, Versmold H (1988) J Chem Phys 88:7157CrossRefGoogle Scholar
  21. 21.
    Evers M, Garbow N, Hessinger D, Palberg T (1998) Phys Rev E 57:6774CrossRefGoogle Scholar
  22. 22.
    Hessinger D, Evers M, Palberg T (2000) Phys Rev E 61:5493CrossRefGoogle Scholar
  23. 23.
    Schaefer DW (1977) J Chem Phys 66:3980CrossRefGoogle Scholar
  24. 24.
    Yamanaka J, Yoshida H, Koga T, Ise N, Hashimoto T (1998) Phys Rev Lett 80:5806CrossRefGoogle Scholar
  25. 25.
    Dozier WD, Lindsay HM, Chaikin PM (1985) J Phys (Paris) ColloqGoogle Scholar
  26. 26.
    Palberg T, Mönch W, Bitzer F, Piazza R, Bellini T (1995) Phys Rev Lett 74:4555CrossRefGoogle Scholar
  27. 27.
    Grier DG, Crocker JC (2000) Phys Rev E 61:980CrossRefGoogle Scholar
  28. 28.
    Schöpe HJ, Decker T, Palberg T (1998) J Chem Phys 109:10068CrossRefGoogle Scholar
  29. 29.
    Schöpe HJ, Palberg TJ (2001) Colloid Interface Sci 233:149CrossRefGoogle Scholar
  30. 30.
    Liu J, Schöpe HJ, Palberg T (2002) J Chem Phys 116:5901CrossRefGoogle Scholar
  31. 31.
    Maaroufi MR, Stipp A, Palberg T (1998) Progr Coll & Polym Sci 108:83CrossRefGoogle Scholar
  32. 32.
    Leibfried G (1955) In: Encyclopedia of Physics. Vol VII, Part I, Crystal Physics I. Springer, BerlinGoogle Scholar
  33. 33.
    Zeller R, Dederichs PH (1973) Phys Stat Sol (b) 55:831Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Patrick Wette
    • 1
  • Hans Joachim Schöpe
    • 1
  1. 1.Institut für PhysikUniversität MainzMainzGermany

Personalised recommendations