Optimization of Sheet Metal Products

  • Herbert Birkhofer
  • Armin Fügenschuh
  • Ute Günther
  • Daniel Junglas
  • Alexander Martin
  • Thorsten Sauer
  • Stefan Ulbrich
  • Martin Wäldele
  • Stephan Walter
Part of the Operations Research Proceedings book series (ORP, volume 2005)

Summary

Linear flow splitting enables the forming of branched sheet metal products in integral style. To optimize those products design parameters have to be based on market requirements. We show that methods that are also used in Operations Research can, in principle, be applied to solve these optimization problems. For this, engineers provide constructive parameters that describe the demands of customers in a mathematical way. Based on these descriptions, we develop a two-stage model. First, a topology and shape optimization of branched sheet metal products is carried out, where the best-possible product is automatically designed by solving some OR models. Then, in stage two, we deal with the problem of how to incorporate manufacturing constraints for sheet metal products. The solution to this model corresponds to a construction plan. The entire approach is demonstrated in the design and construction of a cable conduit.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Fletcher, N.I.M. Gould, S. Leyffer, Ph.L. Toint, A. Wächter. Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming. SIAM J. Optim. 13: 635–659, 2002.MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    M.R. Garey, D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman, San Francisco, 1979.Google Scholar
  3. 3.
    P. Groche, G. v. Breitenbach, M. Jöckel, A. Zettler. New tooling concepts for the future roll forming applications. ICIT Conference. Bled, Yugoslvia, 2003.Google Scholar
  4. 4.
    D. Gross, W. Hauger, W. Schnell. Technische Mechanik, Bd. 2: Elastostatik. Springer, Berlin, 2005.Google Scholar
  5. 5.
    O.S. Hakimi. Optimal Locations of Switching Centers and Medians of a Graph. Operations Research 12:450–459, 1964.MATHCrossRefGoogle Scholar
  6. 6.
    M. Hintermüller, K. Ito, K. Kunisch. The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13: 865–888, 2002.MathSciNetCrossRefGoogle Scholar
  7. 7.
    J.-M. Ho, D.T. Lee, C.-H. Chang, C.K. Wong. Minimum diameter spanning trees and related problems. SIAM J. Computing 20: 987–997, 1991.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    V. Hubka, E. W. Eder. Theorie technischer Systeme-Grundlagen einer wissenschaftlichen Konstruktionslehre. Springer-Verlag, Hamburg, 1984.Google Scholar
  9. 9.
    ILOG CPLEX Division. Suite 279, 930 Tahoe Blvd., Bldg 802, Incline Village, NV 89451, USA. Information available via WWW at URL http://www.cplex.com.Google Scholar
  10. 10.
    T. Sauer, M. Wäldele, H. Birkhofer. Providing Examples for Students and Designers. Proceedings of the NordDesign 2004 Conference, 340–349. Tampere, Finnland.Google Scholar
  11. 11.
    A. Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester, 1986.MATHGoogle Scholar
  12. 12.
    G. Specht, C. Beckmann. F&E Management, Schäffer Poeschel Verlag. Stuttgart, 1996.Google Scholar
  13. 13.
    N.P. Suh. Axiomatic Design-Advances and Applications. Oxford University Press, New York, 2001.Google Scholar
  14. 14.
    M. Ulbrich. Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13: 805–842, 2003.MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    S. Ulbrich. On the Superlinear Local Convergence of a Filter-SQP Method. Mathematical Programming 100:217–245, 2004.MATHMathSciNetGoogle Scholar
  16. 16.
    S. Ulbrich, M. Ulbrich, L.N. Vincente. A Globally Convergent Primal-Dual Interior Point Filter Method for Nonconvex Nonlinear Programming. Mathematical Programming 100:379–410, 2004.MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Wächter, L.T. Biegler. On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming. To appear in Mathematical Programming, 2005.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Herbert Birkhofer
    • 1
  • Armin Fügenschuh
    • 2
  • Ute Günther
    • 2
  • Daniel Junglas
    • 2
  • Alexander Martin
    • 2
  • Thorsten Sauer
    • 1
  • Stefan Ulbrich
    • 2
  • Martin Wäldele
    • 1
  • Stephan Walter
    • 1
  1. 1.Fachgebiet Produktentwicklung und Maschinenelemente Darmstadt, Fachbereich MaschinenbauTechnische Universität DarmstadtDarmstadt
  2. 2.Arbeitsgruppe Diskrete und Kontinuierliche Optimierung, Fachbereich MathematikTechnische Universität DarmstadtDarmstadt

Personalised recommendations