A Heuristic Method for Large-Scale Batch Scheduling in the Process Industries

  • Norbert Trautmann
  • Christoph Schwindt
Part of the Operations Research Proceedings book series (ORP, volume 2005)


In the process industries, final products arise from chemical and physical transformations of materials on processing units. In batch production mode, the total requirements for intermediate and final products are divided into individual batches. Storage facilities of limited capacity are available for stocking raw materials, intermediates, and final products. We present a novel approach to solving large-scale instances of the minimum-makespan production scheduling problem. The basic idea consists in constructing a production schedule by concatenating copies of a cyclic subschedule. For generating an appropriate subschedule we formulate a mixed-integer nonlinear program providing the set of batches of one cycle and the number of cycles needed to satisfy the primary requirements. The subschedule is then obtained by allocating the processing units, intermediates, and storage facilities over time to the batches executed in the cycle.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahuja RK, Magnanti TL, Orlin JB (1993): Network Flows. Prentice Hall, Englewood CliffsGoogle Scholar
  2. 2.
    Blömer F, Günther HO (1998): Scheduling of a multi-product batch process in the chemical industry. Computers in Industry 36:245–259CrossRefGoogle Scholar
  3. 3.
    Brucker P, Hurink J (2000): Solving a chemical batch scheduling problem by local search. Annals of Operations Research 96:17–36zbMATHCrossRefGoogle Scholar
  4. 4.
    Castro P, Barbosa-Póvoa AP, Matos H (2001): An improved RTN continuous-time formulation for the short-term scheduling of multipurpose batch plants. Industrial & Engineering Chemistry Research 40:2059–2068CrossRefGoogle Scholar
  5. 5.
    Gentner K (2005): Dekompositionsverfahren für die ressourcenbeschränkte Projektplanung. Shaker Verlag, AachenGoogle Scholar
  6. 6.
    Gentner K, Neumann K, Schwindt C, Trautmann N (2004): Batch production scheduling in the process industries. In: Leung JYT (ed.) Handbook of Scheduling: Algorithms, Models, and Performance Analysis. CRC Press, Boca RatonGoogle Scholar
  7. 7.
    Ierapetritou MG, Floudas CA (1998): Effective continuous-time formulation for short-term scheduling. 1. Multipurpose batch processes, Industrial & Engineering Chemistry Research 37:4341–4359CrossRefGoogle Scholar
  8. 8.
    Kallrath J (2002): Planning and scheduling in the process industry. OR Spectrum 24:219–250zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Kondili E, Pantelides CC, Sargent RWH (1993): A general algorithm for short-term scheduling of batch operations: I. MILP Formulation. Computers & Chemical Engineering 17:211–227CrossRefGoogle Scholar
  10. 10.
    Maravelias CT, Grossmann IE (2004): A hybrid MILP/CP decomposition approach for the continuous time scheduling of multipurpose batch plants. Computers & Chemical Engineering 28:1921–1949CrossRefGoogle Scholar
  11. 11.
    Neumann K, Schwindt C, Trautmann N (2002): Advanced production scheduling for batch plants in process industries. OR Spectrum 24:251–279zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Schwindt C, Trautmann N (2004): A priority-rule based method for batch production scheduling in the process industries. In: Ahr D, Fahrion R, Oswald M, Reinelt G (eds) Operations Research Proceedings 2003. Springer, BerlinGoogle Scholar
  13. 13.
    Trautmann N (2005): Operative Planung der Chargenproduktion. Deutscher Universitäts-Verlag, WiesbadenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Norbert Trautmann
    • 1
  • Christoph Schwindt
    • 2
  1. 1.Departement für BetriebswirtschaftslehreUniversität BernBernSwitzerland
  2. 2.Institut für WirtschaftswissenschaftTU ClausthalClausthal-ZellerfeldGermany

Personalised recommendations