Advertisement

A Realistic Information Retrieval Environment to Validate a Multiobjective GA-P Algorithm for Learning Fuzzy Queries

  • Oscar Cordón
  • Enrique Herrera-Viedma
  • María Luque
  • Felix Moya
  • Carmen Zarco
Part of the Advances in Soft Computing book series (AINSC, volume 32)

Summary

IQBE has been shown as a promising technique to assist the users in the query formulation process. In this framework, queries are automatically derived from sets of documents provided by them. However, the different proposals found in the specialized literature are usually validated in non realistic information retrieval environments. In this work, we design several experimental setups to create real-like retrieval environments and validate the applicability of a previously proposed multiobjective evolutionary IQBE technique for fuzzy queries on them.

Keywords

Information Retrieval Relevant Document Relevance Feedback Irrelevant Document Fuzzy Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Bäck, D.B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computation. IOP Publishing and Oxford University Press, 1997.Google Scholar
  2. 2.
    R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Adisson, 1999.Google Scholar
  3. 3.
    G. Bordogna, P. Carrara, and G. Pasi. Fuzzy Approaches to Extend Boolean Information Retrieval. In P. Bosc and J. Kacprzyk, editors, Fuzziness in Database Management Systems, pp. 231–274. 1995.Google Scholar
  4. 4.
    H. Chen and et al. A Machine Learning Approach to Inductive Query by Examples: An Experiment Using Relevance Feedback, ID3, Genetic Algoritms, and Simulated Annealing. Journal of the American Society for Information Science, 49(8):693–705, 1998.CrossRefGoogle Scholar
  5. 5.
    C._A. Coello, D. A. Van Veldhuizen, and G. B. Lamant. Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academy Publisher, 2002.Google Scholar
  6. 6.
    O. Cordón, E. Herrera-Viedma, and M. Luque. Evolutionary Learning of Boolean Queries by Multiobjective Genetic Programming. In Proc. PPSN-VII, pp. 710–719, Granada (Spain), 2002. LNCS 2439.Google Scholar
  7. 7.
    O. Cordón, F. Moya, and C. Zarco. A GA-P Algorithm to Automatically Formulate Extended Boolean Queries for a Fuzzy Information Retrieval System. Mathware & Soft Computing, 7(2–3):309–322, 2000.Google Scholar
  8. 8.
    O. Cordón, F. Moya, and C. Zarco. A new Evolutionary Algorithm combining Simulated Annealing and Genetic Programming for Relevance Feedback in Fuzzy Information Retrieval Systems. Soft Computing, 6(5):308–319, 2002.Google Scholar
  9. 9.
    O. Cordón, F. Moya, and C. Zarco. Automatic Learning of Multiple Extended Boolean Queries by Multiobjective GA-P Algorithms. In V. Loia, M. Nikravesh, and L. A. Zadeh, editors, Fuzzy Logic and the Internet. Springer, 2003. In press.Google Scholar
  10. 10.
    L._J. Eshelman and J. D. Schaffer. Real-coded Genetic Algorithms and Interval-Schemata. In L. D. Whitley, editor, Foundations of Genetic Algorithms 2, pp. 187–202. 1993.Google Scholar
  11. 11.
    W. Fan, M. D. Gordon, and P. Pathak. Personalization of Search Engine Services for Effective Retrieval and Knowledge Management. In Proceedings of the 2000 International Conference on Information Systems (ICIS), Brisbane, Australia, 2000.Google Scholar
  12. 12.
    L. Howard and D. D’Angelo. The GA-P: A Genetic Algorithm and Genetic Programming Hybrid. IEEE Expert, 3(10):11–15, 1995.CrossRefGoogle Scholar
  13. 13.
    R.R. Korfhage. Information Storage and Retrieval. Wiley, 1997.Google Scholar
  14. 14.
    J. Koza. Genetic Programming. On the Programming of Computers by Means of Natural Selection. The MIT Press, 1992.Google Scholar
  15. 15.
    D.H. Kraft, F.E. Petry, B.P. Buckes, and T. Sadasivan. Genetic Algorithms for Query Optimization in Information Retrieval: Relevance Feedback. In E. Sanchez, T. Shibata, and L.A Zadeh, editors, Genetic Algorithms and Fuzzy Logic Systems, pp. 155–173. 1997.Google Scholar
  16. 16.
    Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, 1996.Google Scholar
  17. 17.
    E. Sanchez. Importance in Knowledge Systems. Information Systems, 6(14):455–464.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Oscar Cordón
    • 1
  • Enrique Herrera-Viedma
    • 1
  • María Luque
    • 1
  • Felix Moya
    • 2
  • Carmen Zarco
    • 3
  1. 1.Dept. of Computer Science and A.I. E.T.S. de Ingeniería InformáticaUniversity of GranadaGranadaSpain
  2. 2.Dept. of Information Sciences. Faculty of Information SciencesUniversity of GranadaGranadaSpain
  3. 3.PULEVA S.A.GranadaSpain

Personalised recommendations