A study on Monte Carlo Gene Screening

  • Michał Dramiński
  • Jacek Koronacki
  • Jan Komorowski
Part of the Advances in Soft Computing book series (AINSC, volume 31)

Abstract

In the paper, three conceptually simple but computer-intensive versions of an approach to selecting informative genes for classification are proposed. All of them rely on multiple construction of a tree classifier for many training sets randomly chosen from the original sample set, where samples in each training set consist of only a fraction of all of the genes. It is argued that the resulting ranking of genes can then be used to advantage for classification via a classifier of any type.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alizadeh, A.A. et al.: Distinct Types of Diffuse Large B-cell Lymphoma Identified by Expression Profiling. Nature 403, (2000), 503–511.CrossRefGoogle Scholar
  2. 2.
    Breiman, L. et al.: Classification and Regression Trees. Wadsworth International Group, 1984.Google Scholar
  3. 3.
    Dramiński M., Koronacki J., Ćwik J., Komorowski J. Monte Carlo gene screening for supervised classification Proceedings of the EUROFUSE 2004, B. De Baets, R. De Caluwe, G. De Tr, J. Fodor, J. Kacprzyk, S. Zadrozny (Eds.), pp., Exit (2004).Google Scholar
  4. 4.
    Simon, R. et al.: Pitfalls in the Use of DNA Microarray Data for Diagnostic and Prognostic Classification. J. National Cancer Inst. 95 (2003), 14–18CrossRefGoogle Scholar
  5. 5.
    Speed, T. [ed.]: Statistical Analysis of Gene Expression Microarray Data. Chapman & Hall/CRC, 2003.Google Scholar
  6. 6.
    Tibshirani, R. et al.: Class Prediction by Nearest Shrunken Centroids, with Applications to DNA Microarrays. Statistical Science 18, 104–117.Google Scholar
  7. 7.
    Tibshirani, R. et al.: Class Prediction by Nearest Shrunken Centroids, with Applications to DNA Microarrays. Statistical Science 18, 104–117.Google Scholar
  8. 8.
    Wittenn Ian H., Eibe Frank: Data Mining: Practical machine learning tools with Java implementations. Morgan Kaufmann, San Francisco, 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michał Dramiński
    • 1
  • Jacek Koronacki
    • 1
  • Jan Komorowski
    • 2
  1. 1.Institute of Computer SciencePolish Academy of SciencesWarsawPoland
  2. 2.The Linnaeus Centre for BioinformaticsUppsala UniversityUppsalaSweden

Personalised recommendations