Advertisement

Interpretation of Multivariate Data via Visualization

  • Takeshi Furuhashi
  • Kosuke Yamamoto
Conference paper
Part of the Advances in Soft Computing book series (AINSC, volume 29)

3 Conclusion

Visualization of multivariate data is one of the key technologies in the fields of data-mining, kansei engineering, chance discovery, etc. This talk summarized our recent study on visualization methods that could relate data to words.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.J. Wegman and D.B. Carr, “Statistical graphics and visualization,” in Handbook of Statistics 9, Computational Statistics C.R. Tao, ed. North Holland, New York, pp.857–958, 1993Google Scholar
  2. [2]
    F.W. Young, R.A. Faldowski, and M.M. McFarlane, “Multivariate statistical visualization,” in Handbook of Statistics 9, Computational Statistics C.R. Tao, ed. North Holland, New York, pp.959–998, 1993Google Scholar
  3. [3]
    A.I. McLeod and S.P. Provost, “Multivariate Data Visualization,” in Encyclopedia of Environmetrics, A. El-Shaarawi and W. Piegorsch ed., New York: Wiley, pp.1333–1344, 2001Google Scholar
  4. [4]
    K. Yamamoto, T. Yoshikawa, T. Furuhashi, “A Proposal of Fuzzy Modeling on Fusion Axes Considering the Dat a Structure”, FUZZ-IEEE 2003, pp348–353, 2003Google Scholar
  5. [5]
    K. Yamamoto, T. Furuhashi, T. Yoshikawa, “A Proposal of Visualization Method for Obtaining Interpretable Fuzzy Rules”, FUZZ-IEEE 2004, 2004Google Scholar
  6. [6]
    K. Yamamoto, T. Furuhashi, T. Yoshikawa, “A Proposal of Visualization Method using Fuzzy Clustering and Fuzzy Multiple Discriminant Analysis”, International Workshop on Fuzzy Systems and Innovative Commutation (FIC 2004), pp. 356–361, 2004Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Takeshi Furuhashi
    • 1
  • Kosuke Yamamoto
    • 1
  1. 1.Dept. of Computational Science and EngineeringNagoya UniversityNagoya

Personalised recommendations