Advertisement

Binary Factor Analysis with Genetic Algorithms

  • Aleš Keprt
  • Václav Snášel
Part of the Advances in Soft Computing book series (AINSC, volume 29)

Abstract

Binary factor analysis (BFA) is a nonhierarchical binary data analysis, based on reduction of binary space dimension. It allows us to find hidden relationships in binary data, which can be used for efficient data compression, data mining, or intelligent data comparison for information retrieval. It seems that genetic algorithm (GA) may be used to find the solution. This paper describes two GA variants usable for BFA. The better one is described in detail, and results of some experiments are shown, comparing it with other known BFA methods. The experiments reveal that the new method based on revised genetic algorithm performs very well.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allenson, R. Genetic Algorithms with Gender for Multi-Function Optimisation. Technical Report EPCC-SS92-01, Edinburgh Parallel Computing Centre, Edinburgh, Scotland, 1992.Google Scholar
  2. 2.
    Chipperfield, A. J., Fleming, P. J. Parallel Genetic Algorithms, In: Handbook of Parallel and Distributed Computing. Ed. A. Y. Zomaya, pp. 1034–1059, McGraw Hill, 1995.Google Scholar
  3. 3.
    Goldberg, D.E. Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley, 1989, ISBN 0-201-15767-5.Google Scholar
  4. 4.
    Holland, J.H. Adaptation in Natural and Artificial Systems. Ann Arbor, University of Michigan Press, 1975, ISBN 0-262-58111-6.Google Scholar
  5. 5.
    Húsek, D., Frolov, A.A., Řezanková, H., Snášel. Application of Hopfield-like Neural Networks to Nonlinear Factorization. In: CompStat 2002 — Proceedings in Computational Statistics. Physica/Springer Verlag, Germany, 2002, ISBN: 3-7908-1517-9.Google Scholar
  6. 6.
    Keprt, A. Using Blind Search and Formal Concepts for Binary Factor Analysis. In Dateso 2004 — Proceedings of 4th annual workshop. Eds. Václav Snášel, Jaroslav Pokorný, Karel Richta, CEUR WS — Deutsche Bibliothek, Aachen, Germany; 2004, pp. 120–131, ISSN 1613-0073 (CEUR).Google Scholar
  7. 7.
    Keprt, A. Binary Factor Analysis. In: Wofex 2004 — Proceedings of the 2nd annual workshop. VŠB — Technical University, Ostrava, Czech Republic, 2003, pp. 298–303, ISBN 80-248-0596-0.Google Scholar
  8. 8.
    Keprt, A., Snášel, V. Binary Factor Analysis with Help of Formal Concepts. In Proceedings of CLA 2004 — Concept Lattices and their Applications. Eds. Václav Snášel, Radim Bělohlávek, VŠB — Technical University of Ostrava, Czech Republic, 2004, pp. 90–101, ISBN 80-248-0597-9.Google Scholar
  9. 9.
    Olej, V. Comparison of Distributed Genetic Algorithms and Evolution Strategies. In: Proceedings of Mendel’ 97. VUT, Brno, Czech Rep., 1997, ISBN 80-214-0884-7.Google Scholar
  10. 10.
    Ošmera, P., Kvasnička, V., Pospíchal, J. Genetic algorithms with diploid chromosomes. In: Proceedings of Mendel’ 97, pages VUT, Brno, Czech Republic, 1997, pp. 111–116, ISBN 80-214-0884-7.Google Scholar
  11. 11.
    Řezanková, H., Húsek, D., Frolov, A.A. Using Standard Statistical Procedures for Boolean Factorization. In: Proceedings of SIS 2003. Neapol, Italy, 2003.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Aleš Keprt
    • 1
  • Václav Snášel
    • 1
  1. 1.Department of Computer Science Faculty of Electrical Engineering and Computer ScienceVŠB — Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations