Evolutionary Method in Grouping of Units

  • Henryk Potrzebowski
  • Jarosław Stańczak
  • Krzysztof Sęp
Part of the Advances in Soft Computing book series (AINSC, volume 30)

Abstract

This paper deals with the clustering problem, where an order of elements plays a pivotal role. This formulation is very usable for wide range of Decision Support System (DSS) applications. The proposed clustering method consists of two stages. The first is a stage of data matrix reorganization, using a specialized evolutionary algorithm. The second stage is a final clustering step and is performed using a simple clustering method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altus S S, Kroo I M, Gage P J (1996) “A Genetic Algorithm for Scheduling and Decomposition of Multidisciplinary Design Problems”, Journal of Mechanical Design, Vol. 118, No. 4, 486–489Google Scholar
  2. 2.
    Browning T R (2001) “Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions”, IEEE Transactions on Engineering Management, Vol. 48, No 3Google Scholar
  3. 3.
    Lenkstra J K (1977) “Sequencing by Enumerative Methods”, Matematisch Centrum, AmsterdamGoogle Scholar
  4. 4.
    McCormick W T, Schweitzer P J, White T W “Problem decomposition and data reorganization by a clustering technique”, Operations Res. 20, 1972, 993–1009MATHCrossRefGoogle Scholar
  5. 5.
    McCulley C, Bloebaum C (1996) A Genetic Tool for Optimal Design Sequencing in Complex Engineering Systems, Structural Optimization, Vol. 12, No. 2–3, 186–201CrossRefGoogle Scholar
  6. 6.
    Mulawka J, Stańczak J (1999) “Genetic Algorithms with Adaptive Probabilities of Operators Selection”, Proceedings of ICCIMA’99, New Delhi, India, pp. 464–468.Google Scholar
  7. 7.
    Potrzebowski H, Stańczak J, Sęp K (2004) “Evolutionary method in grouping of units with argument reduction”, ICSS, WrocławGoogle Scholar
  8. 8.
    Rogers J L (1997) “Reducing Design Cycle Time and Cost Thorough Process Resequencing”, International Conference on Engineering Design ICED 997, Tampere, FinlandGoogle Scholar
  9. 9.
    Stańczak J (1999) “Rozwój koncepcji i algorytmów dla samodoskonalących się systemów ewolucyjnych”, Ph.D. Dissertation, Politechnika WarszawskaGoogle Scholar
  10. 10.
    Sysło M M, Deo N, Kowalik J S (1983) “Algorithms of discrete optimization”, Prentice-HallGoogle Scholar
  11. 11.
    Yu T L, Goldberg D E, Yassine A, Yassine C (2003) “A Genetic Algorithm Design Inspired by Organizational Theory”, Genetic and Evolutionary Computation Conference (GECCO) 2003, Chicago, Illinois, USA, Publ. Springer-Verlag, Heidelberg, Lecture Notes in Computer Science, Vol 2724/2003, 1620–1621.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Henryk Potrzebowski
    • 1
  • Jarosław Stańczak
    • 1
  • Krzysztof Sęp
    • 1
  1. 1.Systems Research InstitutePolish Academy of ScienceWarsawPoland

Personalised recommendations