Advertisement

Completely splitting method for the Navier-Stokes problem

  • I. V. Kireev
  • U. Rüde
  • V. V. Shaidurov
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 88)

Summary

We consider two-dimensional time-dependent Navier-Stokes equations in a rectangular domain and study the method of full splitting [3]–[4]. On the physical level, this problem is splitted into two processes: convection-diffusion and action of pressure. The convection-diffusion step is further splitted in two geometric directions. To implement the finite element method, we use the approach with uniform square grids which are staggered relative to one another. This allows the Ladyzhenskaya-Babuška-Brezzi condition for stability of pressure to be fulfilled without usual diminishing the number of degrees of freedom for pressure relative to that for velocities. For pressure we take piecewise constant finite elements. As for velocities, we use piecewise bilinear elements.

Keywords

Linear Algebraic Equation Multigrid Method Split Method Fractional Step Extended Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boland J, Nicolaides R (1983) SIAM J Numer Math 20:722–731MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brezzi F, Fortin M (1991) Mixed and Hybrid Finite Element Metods. Springer, New YorkGoogle Scholar
  3. 3.
    Chorin A (1967) J Comp Phys 2:12–26CrossRefzbMATHGoogle Scholar
  4. 4.
    Chorin A (1969) Math Comp 23:341–353MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Glowinski R (1987) Le Θ-scheme. In: Bristian M, Glowinski R, Perinx J (eds) Numerical methods for Navier-Stokes equationsGoogle Scholar
  6. 6.
    Hackbusch W (1985) Multigrid Methods and Applications. Springer, BerlinGoogle Scholar
  7. 7.
    Heywood J, Rannacher R (1982) SIAM J Numer Anal 19:275–311MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Heywood J, Rannacher R (1990) SIAM J Numer Anal 17:353–384MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kloucek P, Rys F (1994) SIAM J Numer Anal 31:1312–1336MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mansfield L (1984) Mumer Math 45:165–172MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Marchuk G, Shaidurov V (1983) Difference Methods and Their Extrapolations. Springer, New YorkzbMATHGoogle Scholar
  12. 12.
    Prohl A (1997) Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations. Teubrer, StudtgartzbMATHGoogle Scholar
  13. 13.
    Rannacher R (2000) Finite Element Methods for the Incompressible Navier-Stokes Equations. In: Galdi G, Heywood J, Rannacher R (eds) Fundamental Directions in Mathematical Fluid Mechanics. Birkhäuser, BerlinGoogle Scholar
  14. 14.
    Rüde U (1994) Multilevel, extrapolation, and sparse grid methods. In: Proceedings of the Fourth European Conference on Multigrid Methods. BostonGoogle Scholar
  15. 15.
    Tirek S (1999) Efficient Solvers for Incompressible Flow Problems. Springer, Berlin HeidelbergGoogle Scholar
  16. 16.
    Shaidurov V (1995) Multigrid Methods for Finite Elements. Kluwer Academic Publishers, DordrechtzbMATHGoogle Scholar
  17. 17.
    Shen J (1996) Math Comp 65:1039–1065MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Temam R (1979) Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland Publishing Company, AmsterdamGoogle Scholar
  19. 19.
    Van Kan (1986) SIAM J Sci Staf Comp 7:870–891CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • I. V. Kireev
    • 1
  • U. Rüde
    • 2
  • V. V. Shaidurov
    • 1
  1. 1.Institute of Computational Modelling SB RASAcademgorodokKrasnoyarskRussia
  2. 2.University of Erlangen-NurembergErlangenGermany

Personalised recommendations