Numerics and simulations for convection dominated problems

  • D. Kröner
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 88)

Summary

The most important challenges in numerical simulations consist in the development of codes for new problems, in the improvement of the performance of existing codes and its validation. In this paper I will focus on the second topic. For in-viscid compressible and convection dominated flows, in particular for problems from magnetohydrodynamics and for flows through porous media we will demonstrate some tools which are useful for more efficient codes: local grid refinement based on rigorous a posteriori error estimates, artificial boundary conditions for problems in outer domains, higher order schemes, balanced schemes for problems with source terms and relaxation schemes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker J (1999) Entwicklung eines effizienten Verfahrens zur Lösung hyperbolischer Differentialgleichungen, Universität Freiburg, Dissertation, http://www.freidok.uni-freiburg.de/volltexte/123/Google Scholar
  2. 2.
    Chainais-Hillairet C (1999) M2AN, Math Model Numer Anal 33:129–156MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Cockburn B, Hou S, Shu C-W (1990) Math Comp 54(190):545–581MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Cockburn B, Coquel F, LeFloch P (1994) Math Comput 63:77–103MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Cockburn B, Karniadakis E, Shu C-W (2000) The development of discontinuous Galerkin methods. Lecture Notes in Computational Science and Engineering 11:3–52MathSciNetGoogle Scholar
  6. 6.
    Coquel F, Perthame B (1998) SIAM J Numer Anal 35:2223–2249MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Dedner A, Kröner D, Rohde C, Schnitzer C, Wesenberg M (2003) Comparison of finite volume and discontinuous Galerkin methods of higher order for systems of conservation laws in multiple space dimensions. In: Hildebrandt S, Karcher H (eds): Geometric Analysis and nonlinear partial differential equations. Berlin, 573–590Google Scholar
  8. 8.
    Dedner A, Wesenberg M (2001) Numerical methods for the real gas MHD equations. In: Freistühler H, Warnecke G (eds) Hyperbolic Problems: Theory, Numerics, Applications. International Series of Numerical Mathematics, Birkhäuser, Eight International Conference in Magdeburg, February/March 2000 140:287–298Google Scholar
  9. 9.
    Dedner A (2003) Solving the system of radiation magnetohydrodynamics for solar physical simulations in 3d. Ph.D. thesis, University of Freiburg, Department of Applied MathematicsGoogle Scholar
  10. 10.
    Dedner A, Kröner D, Sofronov IL, Wesenberg M (2001) J Comput Phys 171(2):448–478MATHCrossRefGoogle Scholar
  11. 11.
    Dolejsi V, Feistauer M, Schwab C On some aspects of the discontinuous Galerkin finite element method for conservation laws, to appear in: Math Comput SimulationGoogle Scholar
  12. 12.
    Klassen L (2003) TVB limiters for discontinuous Galerkin methods for conservation laws. Personal communicationGoogle Scholar
  13. 13.
    Kröner D, Gessner T (2001) Godunov type methods on unstructured grids and local mesh refinement. In: Toro EF (ed) Godunov methods. Theory and applications. International conference, Oxford, GB, October 1999, 527–547Google Scholar
  14. 14.
    Gessner T (2000) Timedependent adaption for supersonic combustion waves modeled with detailed reaction mechanism. Ph.D. thesis, University of FreiburgGoogle Scholar
  15. 15.
    Klöfkorn R, Kröner D, Ohlberger M (2002) Int J Numer Meth Fluids 40:79–91MATHCrossRefGoogle Scholar
  16. 16.
    Kröner D, Rokyta M (1994) SIAM J Numer Anal 31:324–343MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kröner D, Noelle S, Rokyta M (1995) Numer Math 71(4):527–560MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Kröner D (1997) Numerical schemes for conservation laws. Wiley-Teubner series advances in numerical mathematics. B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, first editionGoogle Scholar
  19. 19.
    Kröner D, Ohlberger M (2000) Math Comput 69(229):25–39MATHCrossRefGoogle Scholar
  20. 20.
    Kruzkov SN (1970) Mat Sbornik 81:123 (in Russian) and Math USSR Sbornik 10:217–243MathSciNetGoogle Scholar
  21. 21.
    Kuznetsov NN (1976) USSR Comput Math Math Phys 16(6):105–119CrossRefGoogle Scholar
  22. 22.
    Küther M (2000) East-West J Numer Math 8(4):299–322MATHMathSciNetGoogle Scholar
  23. 23.
    Noelle S (1995) A note on entropy inequalities and error estimates for higher order accurate finite volume schemes on irregular families of grids. SFB 256, Preprint 400, BonnGoogle Scholar
  24. 24.
    Ohlberger M, Rohde C (2002) IMA J Numer Anal 22(2):253–280MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Ohlberger M (2001) M2AN, Math Model Numer Anal 35(2):355–387MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Ohlberger M (2001) Numer Math 87(4):737–761MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Rohde C (1998) Numer Math 81(1):85–124MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Schnitzer T (2003) Discontinuous Galerkin Verfahren angewandt auf die MHD-Gleichungen, DiplomarbeitGoogle Scholar
  29. 29.
    Schupp B (1999) Entwicklung eines effizienten Verfahrens zur Simulation kompressibler Strömungen in 3D auf Parallelrechnern. Ph.D. thesis, Albert-Ludwigs-Universität, Mathematische Fakultät, Freiburg, http://www.freidok.uni-freiburg.de/volltexte/68Google Scholar
  30. 30.
    Wesenberg M (1998) Finite-Volumen-Verfahren für die Gleichungen der Magnetohydrodynamik in ein und zwei Raumdimensionen, DiplomarbeitGoogle Scholar
  31. 31.
    Wesenberg M. Efficient MHD Riemann solvers for simulations on unstructured triangular grids, to appear in: J Numer MathGoogle Scholar
  32. 32.
    Wesenberg M (2003) Efficient higher-order finite volume schemes for (real gas) magnetohydrodynamics, Ph.D. thesis, FreiburgGoogle Scholar
  33. 33.
    Vila JP (1994) RAIRO Anal Numer 28:267–295MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • D. Kröner
    • 1
  1. 1.Institute of Applied MathematicsUniversity of Freiburg i. Br.Freiburg i. Br.Germany

Personalised recommendations