Advertisement

Bacteria and Marine Biogeochemistry

  • Bo Barker Jørgensen

Keywords

Marine Sediment Sulfate Reduction Dissolve Inorganic Carbon Environmental Microbiology Ocean Drill Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alperin, M.J. and Reeburgh, W.S., 1985. Inhibition Experiments on Anaerobic Methane Oxidation. Applied and Environmental Microbiology, 50: 940–945.Google Scholar
  2. Arnosti, C., 1996. A new method for measuring polysaccharide hydrolysis rates in marine environments. Organic Geochemistry, 25: 105–115.Google Scholar
  3. Arnosti, C., 2004. Speed bumps and barricades in the carbon cycle: Substrate structural effects on carbon cycling. Marine Chemistry, 92: 263–273.Google Scholar
  4. Bak, F. and Cypionka, H., 1987. A novel type of energy metabolism involving fermentation of inorganic sulphur compounds. Nature, 326: 891–892.Google Scholar
  5. Benz, M., Brune, A. and Schink, B., 1998. Anaerobic and aerobic oxidation of ferrous iron and neutral pH by chemoheterotrophic nitrate-reduction bacteria. Archives of Microbiology, 169: 159–165.Google Scholar
  6. Berelson, W.M., Hammond, D.E., Smith, K.L. Jr; Jahnke, R.A., Devol, A.H., Hinge, K.R., Rowe, G.T. and Sayles, F. (eds), 1987. In situ benthic flux measurement devices: bottom lander technology. MTS Journal, 21: 26–32.Google Scholar
  7. Berg, P., Røy, H., Janssen, F., Meyer, V., Jørgensen, B.B., Hüttel, M. and De Beer, D., 2003. Oxygen uptake by aquatic sediments measured with a novel non-invasive EDDY-correlation technique. Marine Ecology Progress Series, 261: 75–83.Google Scholar
  8. Berner, R.A., 1980. Early diagenesis: A theoretical approach. Princton Univ. Press, Princton, NY, 241 pp.Google Scholar
  9. Boetius, A. and Lochte, K., 1996. Effect of organic enrichments on hydrolytic potentials and growth of bacteria in deep-sea sediments. Marine Ecology Progress Series, 140: 239–250.Google Scholar
  10. Boetius, A. and Damm, E., 1998. Benthic oxygen uptake, hydrolytic potentials and microbial biomass at the Arctic continental slope. Deep-Sea Research I, 45: 239–275.Google Scholar
  11. Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B.B., Witte, U. and Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407: 623–626.Google Scholar
  12. Borowski, W.S., Paull, C.K. and Ussler, W., 1996. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Geology, 24: 655–658.Google Scholar
  13. Boudreau, B.P., 1988. Mass-transport constraints on the growth of discoidal ferromanganese nodules. American Journal of Science, 288: 777–797.Google Scholar
  14. Boudreau, B.P., 1997. Diagenetic models and their impletation: modelling transport and reactions in aquatic sediments. Springer, Berlin, Heidelberg, NY, 414 pp.Google Scholar
  15. Brasier, M.D., Green, O.R., Jephcoat, A.P., Kleppe, A.K., van Krankendonk, M.J., Lindsay, J.F., Steele, A. and Grassineau, N.V., 2002. Questioning the evidence for Earth’s oldest fossils. Nature, 416: 76–81.Google Scholar
  16. Canfield, D.E., 1993. Organic matter oxidation in marine sediments. In: Wollast, R., Mackenzie, F.T. and Chou, L. (eds), Interactions of C, N, P and S biogeochemical cycles. NATO ASI Series, 14. Springer, Berlin, Heidelberg, NY, pp. 333–363.Google Scholar
  17. Canfield, D.E., Jørgensen; B.B., Fossing, H., Glud, R.N., Gundersen, J., Ramsing, N.B., Thamdrup, B., Hansen, J.W., Nielsen, L.P. and Hall, P.O.J., 1993b. Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology, 113: 27–40.Google Scholar
  18. Canfield, D.E. and Teske, A., 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382: 127–132.Google Scholar
  19. Canfield, D.E., Kristensen, E. and Thamdrup, B., 2005. Aquatic Geomicrobiology. Elsevier, San Diego, 640 pp.Google Scholar
  20. Christensen, D., 1984. Determination of substrates oxidized by sulfate reduction in intact cores of marine sediments. Limnology and Oceanography, 29: 189–192.Google Scholar
  21. Chrost, R.J., 1991. Microbial enzymes in aquatic environments. Springer, Berlin, Heidelberg, NY, 317 pp.Google Scholar
  22. Coleman, M.L., Hedrick, D.B., Lovley, D.R., White, D.C. and Pye, K., 1993. Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature, 361: 436–438.Google Scholar
  23. Conrad, R., Schink, B. and Phelps, T.J., 1986. Thermodynamics of H2-consuming and H2-producing metabolic reactions in diverse methanogenic environments under in situ conditions. FEMS Microbiology Ecology, 38: 353–360.Google Scholar
  24. Cypionka, H., 1994. Novel metabolic capacities of sulfate-reducing bacteria, and their activities in microbial mats. In: Stal, L.J. and Caumette, P. (eds), Microbial mats, NATO ASI Series, 35, Springer, Berlin, Heidelberg, NY, pp. 367–376.Google Scholar
  25. Dannenberg, S., Kroder, M., Dilling, W. and Cypionka, H., 1992. Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Archives of Microbiology, 158: 93–99.Google Scholar
  26. DeLong, E.F., Franks, D.G., Yayanos, A.A., 1997. Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Applied and Environmental Microbiology 63: 2105–2108.Google Scholar
  27. D’Hondt, S.L., Jørgensen, B.B., Miller, D.J., et al., 2003. Proceedings of the Ocean Drilling Program, Initial Reports, 201 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA.Google Scholar
  28. D’Hondt, S., Jørgensen, B.B., Miller, D.J., Batzke, A., Blake, R., Cragg, B.A., Cypionka, H., Dickens, G.R., Ferdelman, T., Hinrichs, K.-U., Holm, N.G., Mitterer, R., Spivack, A., Wang, G., Bekins, B., Engelen, B., Ford, K., Gettemy, G., Rutherford, S.D., Sass, H., Skilbeck, C.G., Aiello, I.W., Guèrin, G., House, C.H., Inagaki, F., Meister, P., Naehr, T., Niitsuma, S., Parkes, R.J., Schippers, A., Smith, D.C., Teske, A., Wiegel, J., Padilla, C.N. and Acosta, J.L.S., 2004. Distributions of microbial activities in deep subseafloor sediments. Science, 306: 2216–2221.Google Scholar
  29. Ehrenreich, A. and Widdel, F., 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Applied and Environmental Microbiology, 60: 4517–4526.Google Scholar
  30. Ehrlich, H.L., 1996. Geomicrobiology. Marcel Dekker, NY, 719 pp.Google Scholar
  31. Fenchel, T.M. and Jørgensen, B.B., 1977. Detritus food chains of aquatic ecosystems: The role of bacteria. In: Alexander, M. (ed), Advances in Microbial Ecology, 1, Plenum Press, NY, pp. 1–58.Google Scholar
  32. Fenchel, T., King, G.M. and Blackburn, T.H., 1998. Bacterial biogeochemistry: The ecophysiology of mineral cycling. Academic Press, London, 307 pp.Google Scholar
  33. Fossing, H. and Jørgensen, B.B., 1989. Measurement of bacterial sulfate reduction in sediments: evaluation of a single-step chromium reduction method. Biogeochemistry, 8: 205–222.Google Scholar
  34. Fossing, H., Thode-Andersen, S. and Jørgensen, B.B., 1992. Sulfur isotope exchange between 35S-labeled inorganic sulfur compounds in anoxic marine sediments. Marine Chemistry, 38: 117–132.Google Scholar
  35. Fossing, H., Gallardo, V.A., Jørgensen, B.B., Hüttel, M., Nielsen, L.P., Schulz, H., Canfield, D.E., Forster, S., Glud, R.N., Gundersen, J.K., Küfer, J., Ramsing, N.B., Teske, A., Thamdrup, B. and Ulloa, O., 1995. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature, 374: 713–715.Google Scholar
  36. Fossing, H., 1995. 35S-radiolabeling to probe biogeochemical cycling of sulfur. In:. Vairavamurthy, M.A and. Schoonen, M.A.A (eds), Geochemical transformations of sedimentary sulfur. ACS Symposium Series, 612, American Chemical Society, Washington, DC, pp. 348–364.Google Scholar
  37. Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B. and Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43: 1075–1088.Google Scholar
  38. Glud, R.N., Gundersen, J.K., Jørgensen, B.B., Revsbech, N.P. and Schulz, H.D., 1994. Diffusive and total oxygen uptake of deep-sea sediments in the eastern South Atlantic Ocean: in situ and laboratory measurements. Deep-Sea Research, 41: 1767–1788.Google Scholar
  39. Glud, R. N., Tengberg, A., Kühl, M., Hall, P.O.J. and Klimant, I., 2001. An in situ instrument for planar O2 optode measurements at benthic interfaces. Limnology and Oceanography, 46: 2073–2080.Google Scholar
  40. Greeff, O., Glud, R.N., Gundersen, J., Holby, O. and Jørgensen, B.B., 1998. A benthic lander for tracer studies in the sea bed: in situ measurements of sulfate reduction. Continental Shelf Research, 18: 1581–1594.Google Scholar
  41. Gundersen, J.K. and Jørgensen, B.B., 1990. Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor. Nature, 345: 604–607.Google Scholar
  42. Gundersen, J.K., Glud, R.N. and Jørgensen, B.B., 1995. Oxygen turnover in the sea bed (in Danish), Vol. 57. Danish Ministry of Environment and Energy, Copenhagen, 155 pp.Google Scholar
  43. Hansen, J.W., Thamdrup, B., and Jørgensen, B.B., 2000. Anoxic incubation of sediment in gas-tight plastic bags: A method for biogeochemical process studies. Marine Ecology Progress Series, 208: 273–282.Google Scholar
  44. Hedges, J.I., 1978. The formation and clay mineral reactions of melanoidins. Geochimica et Cosmochimica Acta, 42: 69–76.Google Scholar
  45. Henrichs, S.M. and Reeburgh, W.S., 1987. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiological Journal, 5: 191–237.Google Scholar
  46. Henrichs, S.M., 1992. Early diagenesis of organic matter in marine sediments: progress and perplexity. Marine Chemistry, 39: 119–149.Google Scholar
  47. Henriksen, K., 1980. Measurement of in situ rates of nitrification in sediment. Microbial Ecology, 6: 329–337.Google Scholar
  48. Hoehler, T.M., Alperin, M.J., Albert, D.B. and Martens, C.S., 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles, 8: 451–463.Google Scholar
  49. Hoehler, T.M., Alperin, M.J., Albert, D.B. and Martens, C.S., 1998. Thermodynamic control on hydrogen concentrations in anoxic sediments. Geochimica et Cosmochimica Acta, 62: 1745–1756.Google Scholar
  50. Huettel, M., Ziebis, W., Forster, S. and Luther, G.W., 1998. Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochimica et Cosmochimica Acta, 62: 613–631.Google Scholar
  51. Isaksen, M.F. and Jørgensen, B.B., 1996. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Applied and Environmental Microbiology, 62: 408–414.Google Scholar
  52. Iversen, N. and Jørgensen, B.B., 1985. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnology and Oceanography, 30: 944–955.Google Scholar
  53. Jørgensen, B.B., 1978. A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. I. Measurement with radiotracer techniques. Geomicrobiology Journal, 1:11–27.Google Scholar
  54. Jørgensen, B.B., 1982. Mineralization of organic matter in the sea bed-the role of sulphate reduction. Nature, 296: 643–645.Google Scholar
  55. Jørgensen, B.B., 1990. A thiosulfate shunt in the sulfur cycle of marine sediments. Science, 249: 152–154.Google Scholar
  56. Jørgensen, B.B. and Bak, F., 1991. Pathways and microbiology of thiosulfate transformation and sulfate reduction in a marine sediment (Kattegat, Denmark). Applied and Environmental Microbiology, 57: 847–856.Google Scholar
  57. Jørgensen, B.B., 2001. Microbial life in the diffusive boundary layer. In: Boudreau, B.P. and Jørgensen, B.B. (eds), The benethic boundary layer: transport processes and biogeochemistry. Oxford University Press, Oxford, pp. 348–373.Google Scholar
  58. Jørgensen, B. B. and Nelson, D.C, 2004. Sulfide oxidation in marine sediments: Geochemistry meets microbiology. In Amend, J.P., Edwards, K.J. and Lyons, T.W. (eds), Sulfur Biogeochemistry — Past and Present. Geological Society of America, pp. 63–81.Google Scholar
  59. Kallmeyer, J., Ferdelman, T.G., Weber, A., Fossing, H. and Jørgensen, B.B., 2004. A cold chromium distillation procedure for radiolabeled sulfide applied to sulfate reduction measurements. Limnology and Oceanography: Methods, 2: 171–180.Google Scholar
  60. Karp-Boss, L., Boss, E. and Jumars, P.A., 1996. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanography and Marine Biology Annual Reviews, 34: 71–107.Google Scholar
  61. Keil, R.G., Montlucon, Prahl, F.G. and Hedges, J.I., 1994b. Sorptive preparation of labile organic matter in marine sediments. Nature, 370: 549–552.Google Scholar
  62. Kelly, D.P., 1982. Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Philosophic Transactions of the Royal Society of London, 298:499–528.Google Scholar
  63. King, G.M., 1983. Sulfate reduction in Georgia salt marsh soils: An evaluation of pyrite formation by use of 35S and 55Fe tracers. Limnology and Oceanography, 28: 987–995.Google Scholar
  64. Klinkhammer, G.P., 1980. Early diagenesis in sediments from the eastern equatorial Pacific, II. Pore water metal results. Earth and Planetary Science Letters, 49: 81–101.Google Scholar
  65. Knoblauch, C. and Jørgensen, B.B., 1999. Effect of temperature on sulfate reduction, growth rate, and growth yield in five psychrophilic sulfate-reducing bacteria from Arctic sediments. Environmental Microbiology, 1: 457–467.Google Scholar
  66. Knoblauch, C., Sahm, K. and Jørgensen, B.B., 1999. Psychrophilic sulphate reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov., and Desulfotalea arctica sp. nov. Journal of Systematic Bacteriology, 49: 1631–1643.Google Scholar
  67. Koch, A.L., 1990. Diffusion, the crucial process in many aspects of the biology of bacteria. In: Marshall, K.C. (ed), Advances in microbial ecology, 11, Plenum, NY, pp. 37–70.Google Scholar
  68. Koch, A.L., 1996. What size should a bacterium be? A question of scale. Annual Reviews of Microbiology, 50: 317–348.Google Scholar
  69. Krekeler, D. and Cypionka, H., 1995. The preferred electron acceptor of Desulfovibrio desulfuricans CSN. FEMS Microbiology Ecology, 17: 271–278.Google Scholar
  70. Krüger, M., Meyerdierks, A., Glöckner, F.O., Amann, R., Widdel, F., Kube, M., Reinhardt, R., Kahnt, J., Böcher, R., Thauer, R.K. and Shima, S, 2003. A conspicuous nickel protein in microbial mats that oxidize methane anaerobically. Nature, 426: 878–881.Google Scholar
  71. Kühl, M. and Revsbech, N.P., 2001. Biogeochemical microsensors for boundary layer studies. In: Boudreau, B.P. and Jørgensen, B.B. (eds.), The benthic boundary layer: transport processes and biogeochemistry. Oxford University Press, Oxford, pp. 180–210.Google Scholar
  72. Kvenvolden, K.A., 1993. Gas hydrates-geological perspective and global change. Reviews in Geophysics, 31: 173–187.Google Scholar
  73. Llobet-Brossa, E., Roselló-Mora, R. and Ammann, R., 1998. Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Applied and Environmental Microbiology, 64: 2691–2696.Google Scholar
  74. Lochte, K. and Turley, C.M., 1988. Bacteria and cyanobacteria associated with phytodetritus in the deep sea. Nature, 333: 67–69.Google Scholar
  75. Madigan, M.T., Martinko, J.M. and Parker, J., 1997. Biology of microorganisms. Prentice Hall, London, 986 pp.Google Scholar
  76. Nauhaus, K., Boetius, A., Krüger, M. and Widdel, F., 2002. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environmental Microbiology 4: 296–305.Google Scholar
  77. Nielsen, L.P., 1992. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiology Ecology, 86: 357–362.Google Scholar
  78. Niewöhner, C., Hensen, C., Kasten, S., Zabel, M. and Schulz, H.D., 1998. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia. Geochimica et Cosmochimica Acta, 62: 455–464.Google Scholar
  79. Oremland, R.S. and Polcin, S., 1982. Methanogenesis and sulfate reduction: Competitive and noncompetetive substrates in estuarine sediments. Applied and Environmental Microbiology, 44: 1270–1276.Google Scholar
  80. Oremland, R.S., Marsh, L.M. and Polcin, S., 1982. Methane production and simultaneous sulphate reduction in anoxic saltmarsh sediments. Nature, 296: 143–145.Google Scholar
  81. Oremland, R.S. and Capone, D.G., 1988. Use of „specific” inhibitors in biogeochemistry and microbial ecology. In: Marshall, K.C. (ed), Advances in microbial ecology, 10, Plenum Press, NY, pp. 285–383.Google Scholar
  82. Orphan, V.J., House, C.H., Hinrichs, K.-U., McKeegan, K.D. and DeLong, E.F., 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293: 484–487.Google Scholar
  83. Parkes, R.J., Cragg, B.A. and Wellsbury, P., 2000. Recent studies on bacterial populations and processes in marine sediments: a review. Hydrogeology Journal, 8: 11–28.Google Scholar
  84. Parkes, J.R., Cragg, B.A., Bale, S.J., Getliff, J.M., Goodman, K., Rochell, P.A., Fry, J.C., Weightman, A.J. and Harvey, S.M., 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371: 410–413.Google Scholar
  85. Parkes, R.J., Webster, G., Cragg, B.A., Weightman, A.J., Newberry, C.J., Ferdelman, T.G., Kallmeyer, J., Jørgensen, B.B., Aiello, I.W., and Fry, J.C., 2005. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature, 436: 390–394.Google Scholar
  86. Postgate, J.R., 1984. The sulfate-reducing bacteria. Cambridge University Press, London, 151 pp.Google Scholar
  87. Rabus, F., Fukui, M., Wilkes, H. and Widdel, F., 1996. Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil. Applied and Environmental Microbiology, 62: 3605–3613.Google Scholar
  88. Redfield, A.C., 1958. The biological control of chemical factors in the environment. American Scientist, 46:206–222.Google Scholar
  89. Reeburgh, W.S., 1969. Observations of gases in Chesapeake Bay sediments. Limnology and Oceanography, 14: 368–375.Google Scholar
  90. Reimers, C.E., 1987. An in situ microprofiling instrument for measuring interfacial pore water gradients: methods and oxygen profiles from the North Pacific Ocean. Deep-Sea Research, 34: 2019–2035.Google Scholar
  91. Revsbech, N.P., Nielsen, L.P., Christensen, P.B. and Sørensen, J., 1988. Combined oxygen and nitrous oxide microsensor for denitrification studies. Applied and Environmental Microbiology, 54: 2245–2249.Google Scholar
  92. Roden, E.E. and Lovley, D.R., 1993. Evaluation of 55Fe as a tracer of Fe(III) reduction in aquatic sediments. Geomicrobiology Journal, 11: 49–56.Google Scholar
  93. Rueter, P., Rabus, R., Wilkes, H., Aeckersberg, F., Rainey, F.A., Jannasch, H.W. and Widdel, F., 1994. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature, 372: 455–458.Google Scholar
  94. Sagemann, J., Jørgensen, B.B. and Greeff, O., 1998. Temperature dependence and rates of sulfate reduction in cold sediments of Svalbard, Arctic Ocean. Geomicrobiology Journal, 15: 83–98.Google Scholar
  95. Sansone, F.J., Andrews, C.C. and Okamoto, M.Y., 1987. Adsorption of short-chain organic acids onto nearshore marine sediments. Geochimica et Cosmochimica Acta, 51: 1889–1896.Google Scholar
  96. Santschi, P.H., Anderson R.F., Fleisher, M.Q. and Bowles, W., 1991. Measurements of diffusive sublayer thicknesses in the ocean by alabaster dissolution, and their implications for the measurements of benthic fluxes. Journal of Geophysical Research, 96: 10.641–10.657.Google Scholar
  97. Schink, B., 1997. Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews, 61: 262–280.Google Scholar
  98. Schippers, A., Neretin, L.N., Kallmeyer, J., Ferdelman, T.G., Cragg, B.A., Parkes, R.J. and Jørgensen, B.B., 2005. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature, 433:861–864.Google Scholar
  99. Schopf, J.W. and Klein, C. (eds), 1992. The proterozoic biosphere. Cambridge University Press, Cambridge, 1348 pp.Google Scholar
  100. Schulz, H.D., Dahmke, A., Schinzel, U., Wallmann, K. and Zabel, M., 1994. Early diagenetic processes, fluxes and reaction rates in sediments of the South Atlantic. Geochimica et Cosmochimica Acta, 58:2041–2060.Google Scholar
  101. Schulz, H., Brinkhoff, T., Ferdelman, T.G., Hernandez Marine, M., Teske, A. and Jørgensen, B.B., 1999. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science, 284: 493–495.Google Scholar
  102. Seitzinger, S. P., Nielsen, L.P., Caffrey, J. and Christensen, P.B., 1993. Denitrification measurements in aquatic sediments: A comparison of three methods. Biogeochemistry, 23: 147–167.Google Scholar
  103. Smith, K.L. Jr., Clifford, C.H. Eliason, A.h., Walden, B., Rowe, G.T. and Teal, J.M., 1976. A free vehicle for measuring benthic community metabolism. Limnology and Oceanography, 21: 164–170.Google Scholar
  104. Sørensen, J., 1978. Denitrification rates in a marine sediment as measured by the acetylene inhibition technique. Applied and Environmental Microbiology, 35: 301–305.Google Scholar
  105. Sørensen, J., Christensen, D. and Jørgensen, B.B., 1981. Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Applied and Environmental Microbiology, 42: 5–11.Google Scholar
  106. Stetter, K.O., 1988. Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic Archaebacteria. Systematic and Applied Microbiology, 10: 172–173.Google Scholar
  107. Stetter, K.O., Huber, R., Blöchl, E., Knurr, M., Eden, R.D., Fielder, M., Cash, H. and Vance, I., 1993. Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature, 365: 743–745.Google Scholar
  108. Stetter, K.O., 1996. Hyperthermophilic procaryotes. FEMS Microbiology Revue, 18: 149–158.Google Scholar
  109. Straub, K.L., Benz, M., Schink, B. and Widdel, F., 1996. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Applied and Environmental Microbiology, 62: 1458–1460.Google Scholar
  110. Straub, K.L. and Buchholz-Cleven, B.E.E., 1998. Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments. Applied and Environmental Microbiology, 64: 4846–4856.Google Scholar
  111. Suess, E., 1980. Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization. Nature, 288: 260–263.Google Scholar
  112. Tegelaar, E.W., de Leeuw, J.W., Derenne, S. and Largeau, C., 1989. A reappraisal of kerogen formation. Geochimica et Cosmochimica Acta, 53: 3103–3106.Google Scholar
  113. Tengberg, A., de Bovee, F., Hall, P, Berelson, W., Chadwick, D., Ciceri, G., Crassous, P., Devol, A., Emerson, s., Gage, J., Glud, R., Graziottin, F., Gundersen, J., Hammond, D., Helder, W., Hinga, K., Holby, O., Jahnke, R., Khripounoff, A., Lieberman, S., Nuppenau, V., Pfannkuche, O., Reimers, C., Rowe, G., Sahami, A., Sayles, F., Schurter, M., Smallman, D., Wehrli, B. and de Wilde, P., 1995. Benthic chamber and profiling landers in oceanography-A review of design, technical solutions and function. Progress in Oceanography, 35: 253–292.Google Scholar
  114. Thamdrup, B., Finster, K., Hansen, J.W. and Bak, F., 1993. Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Applied and Environmental Microbiology, 59: 101–108.Google Scholar
  115. Thamdrup, B., Fossing, H. and Jørgensen, B.B., 1994. Manganese, iron, and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochimica et Cosmochimica Acta, 58: 5115–5129.Google Scholar
  116. Thauer, R.K., Jungermann, K. and Decker, K., 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacterial Reviews, 41: 100–180.Google Scholar
  117. Thomsen, L., Jähmlich, S., Graf, G., Friedrichs, M., Wanner, S. and Springer, B., 1996. An instrument for aggregate studies in the benthic boundary layer. Marine Geology, 135: 153–157.Google Scholar
  118. Vetter, Y.A., Deming, J.W., Jumars, P.A. and Kriegerbrockett, B.B., 1998. A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microbiology Ecology, 36: 75–92.Google Scholar
  119. Weber, A. and Jørgensen, B.B., 2002. Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin, Gulf of California, Mexico. Deep-Sea Research, 49: 827–841.Google Scholar
  120. Weiss, M.S., Abele, U., Weckesser, J., Welte, W. und Schulz, G.E., 1991. Molecular architecture and electrostatic properties of a bacterial porin. Science, 254: 1627–1630.Google Scholar
  121. Wellsbury, P., Goodman, K., Barth, T., Cragg, B.A., Barnes, S.P. and Parkes R.J., 1997. Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature, 388: 573–576.Google Scholar
  122. Wenzhöfer, F. and Glud, R.N., 2002. Benthic carbon mineralization in the Atlantic: a synthesis based on in situ data from the last decade. Deep-Sea Research I, 49: 1255–1279.Google Scholar
  123. Westrich, J.T. and Berner, R.A., 1984. The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested. Limnology and Oceanography, 29: 236–249.Google Scholar
  124. Whitman, W.B., Coleman, D.C. and Wiebe, W.J., 1998. Prokaryotes: The unseen majority. Proceedings of the National. Academy of Sciences, USA, 95: 6578–6583.Google Scholar
  125. Widdel, F., 1988. Microbiology and ecology of sulfateand sulfur-reducing bacteria. In: Zehnder, A.J.B. (ed). Biology of anaerobic microorganisms. Wiley & Sons, NY, pp. 469–585.Google Scholar
  126. Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B. and Schink, B., 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 362: 834–836.Google Scholar
  127. Yayanos, A.A., 1986. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc. Natl. Acad. Sci., 83: 9542–9546.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bo Barker Jørgensen
    • 1
  1. 1.Max-Planck-Institut für marine MikrobiologieBremenGermany

Personalised recommendations