Advertisement

Physical Properties of Marine Sediments

  • Monika Breitzke

Keywords

Marine Sediment Attenuation Coefficient Pore Fluid Synthetic Seismogram Ocean Drill Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki K., Richards P.G., 2002. Quantitative Seismology. University Science Books, 700 ppGoogle Scholar
  2. Archie G.E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mineralogical, Metalurgical and Petrological Engineering 146: 54–62Google Scholar
  3. Barker P.F., Kennett J.P. et al., 1990. Proceedings of the Ocean Drilling Program, Scientific Results 113, College Station, TX (Ocean Drilling Program), 1033 ppGoogle Scholar
  4. Bell D.W., Shirley D.J., 1980. Temperature variation of the acoustical properties of laboratory sediments. Journal of the Acoustical Society of America 68: 227–231CrossRefGoogle Scholar
  5. Bergmann U., 1996. Interpretation of digital Parasound echosounder records of the eastern Arctic Ocean on the basis of sediment physical properties. Rep. on Polar Research, Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven 183: 164 ppGoogle Scholar
  6. Berryman J.G., 1980. Confirmation of Biot’s theory. Applied Physics Letters 37: 382–384CrossRefGoogle Scholar
  7. Biot M.A., 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. Journal of the Acoustical Society of America 28: 179–191CrossRefGoogle Scholar
  8. Biot M.A., 1956b. Theory of wave propagation of elastic waves in a fluid-saturated porous solid. I. Lowfrequency range. Journal of the Acoustical Society of America 28: 168–178CrossRefGoogle Scholar
  9. Bleil U. et al., 1994. Report and preliminary results of Meteor cruise M29/2 Montevideo-Rio de Janeiro, 15.07.–08.08.1994. Ber. FB Geow. Univ. Bremen 59: 153 ppGoogle Scholar
  10. Blum P., 1997. Physical properties handbook: a guide to the shipboard measurement of physical properties of deep-sea cores. Technical Note 26, Ocean Drilling Program, College Station, TexasGoogle Scholar
  11. Bodwadkar S.V., Reis J.C., 1994. Porosity measurements of core samples using gamma-ray attenuation. Nuclear Geophysics 8: 61–78Google Scholar
  12. Boyce R.E., 1968. Electrical resistivity of modern marine sediments from the Bering Sea. Journal of Geophysical Research 73: 4759–4766CrossRefGoogle Scholar
  13. Boyce R.E., 1973. Appendix I. Physical properties-Methods. In: Edgar NT, Sanders JB et al (eds) Initial Reports of the Deep Sea Drilling Project 15, Washington, US Government Printing Office, pp 1115–1127Google Scholar
  14. Boyce R.E., 1976. Definitions and laboratory techniques of compressional sound velocity parameters and wetwater content, wet-bulk density, and porosity parameters by gravity and gamma ray attenuation techniques. In: Schlanger S.O., Jackson E.D. et al (eds) Initial Reports of the Deep Sea Drilling Project 33, Washington, US Government Printing Office, pp 931–958Google Scholar
  15. Breitzke M., Spieß V., 1993. An automated full waveform logging system for high-resolution P-wave profiles in marine sediments. Marine Geophysical Researches 15:297–321CrossRefGoogle Scholar
  16. Breitzke M., Grobe H., Kuhn G., Müller P., 1996. Full waveform ultrasonic transmission seismograms-a fast new method for the determination of physical and sedimentological parameters in marine sediment cores. Journal of Geophysical Research 101: 22123–22141CrossRefGoogle Scholar
  17. Breitzke M., 1997. Elastische Wellenausbreitung in marinen Sedimenten-Neue Entwicklungen der Ultraschall Sedimentphysik und Sedimentechographie. Ber. FB Geo Univ. Bremen 104: 298 ppGoogle Scholar
  18. Breitzke M., 2000. Acoustic and elastic characterization of marine sediments by analysis, modeling, and inversion of ultrasonic P wave transmission seismograms, Journal of Geophysical Research 105: 21411–21430CrossRefGoogle Scholar
  19. Bryant W.R., Hottman W., Trabant P., 1975. Permeability of unconsolidated and consolidated marine sediments, Gulf of Mexico. Marine Geotechnology 1:1–14Google Scholar
  20. Carman P.C., 1956. Flow of gases through porous media. Butterworths Scientific Publications, London, 182 ppGoogle Scholar
  21. Chelkowski A., 1980. Dielectric Physics. Elsevier, Amsterdam, 396 ppGoogle Scholar
  22. Childress J.J., Mickel T.J., 1980. A motion compensated shipboard precision balance system. Deep Sea Research 27A: 965–970Google Scholar
  23. Constable C., Parker R., 1991. Deconvolution of logcore paleomagnetic measurements-spline therapy for the linear problem. Geophysical Journal International 104: 453–468Google Scholar
  24. Courtney R.C., Mayer L.A., 1993. Acoustic properties of fine-grained sediments from Emerald Basin: toward an inversion for physical properties using the Biot-Stoll model. Journal of the Acoustical Society of America 93: 3193–3200CrossRefGoogle Scholar
  25. Dobeneneck v.T., Schmieder F., 1999. Using rock magnetic proxy records for orbital tuning and extended time series analyses into the super-and sub-Milankovitch bands. In: Fischer G and Wefer G (eds) Use of proxies in paleoceanography: examples from the South Atlantic. Springer Verlag Berlin, pp 601–633.Google Scholar
  26. Ellis D.V., 1987. Well logging for earth scientists. Elsevier, Amsterdam, 532 ppGoogle Scholar
  27. Fisher A.T., Fischer K., Lavoie D., Langseth M., Xu J., 1994. Geotechnical and hydrogeological properties of sediments from Middle Valley, northern Juan de Fuca Ridge. In: Mottle M.J., Davis E., Fisher A.T., Slack J.F. (eds) Proceedings of the Ocean Drilling Program, Scientific Results 139, College Station, TX (Ocean Drilling Program), pp 627–647Google Scholar
  28. Gassmann F., 1951. Über die Elastizität poröser Medien. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 96: 1–23Google Scholar
  29. Gealy E.L., 1971. Saturated bulk density, grain density and porosity of sediment cores from western equatorial Pacific: Leg 7, Glomar Challenger. In: Winterer E.L. et al. (eds) Initial Reports of the Deep Sea Drilling Project 7, Washington, pp 1081–1104Google Scholar
  30. Gebrande H., 1982. Elastic wave velocities and constants of elasticity at normal conditions. In: Hellwege K.H. (ed) Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology. Group V: Geophysics and Space Research 1, Physical Properties of Rocks, Subvolume b, Springer Verlag, Berlin, pp 8–35Google Scholar
  31. Gerland S., 1993. Non-destructive high resolution density measurements on marine sediments. Rep. on Polar Research, Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven 123: 130 ppGoogle Scholar
  32. Gerland S., Richter M., Villinger H., Kuhn G., 1993. Nondestructive porosity determination of Antarctic marine sediments derived from resistivity measurements with the inductive method. Marine Geophysical Researches 15: 201–218CrossRefGoogle Scholar
  33. Gerland S., Villinger H., 1995. Nondestructive density determination on marine sediment cores from gamma-ray attenuation measurements. Geo-Marine Letters 15: 111–118CrossRefGoogle Scholar
  34. Gunn D.E., Best A.I., 1998. A new automated nondestructive system for high resolution multi-sensor logging of open sediment cores. Geo-Marine Letters 18: 70–77CrossRefGoogle Scholar
  35. Hamilton E.L., 1971. Prediction of in situ acoustic and elastic properties of marine sediments. Geophysics 36: 266–284CrossRefGoogle Scholar
  36. Hovem J.M., Ingram G.D., 1979. Viscous attenuation of sound in saturated sand. Journal of the Acoustical Society of America 66: 1807–1812CrossRefGoogle Scholar
  37. Hovem J.M., 1980. Viscous attenuation of sound in suspensions and high-porosity marine sediments. Journal of the Acoustical Society of America 67:1559–1563CrossRefGoogle Scholar
  38. Hübscher C., Spieß V., Breitzke M., Weber M.E., 1997. The youngest channel-levee system of the Bengal Fan: results from digital echosounder data. Marine Geology 141: 125–145CrossRefGoogle Scholar
  39. Jackson P.D., Taylor-Smith D., Stanford P.N., 1978. Resistivity-porosity-particle shape relationships for marine sands. Geophysics 43: 1250–1268CrossRefGoogle Scholar
  40. Jannsen D., Voss J., Theilen F., 1985. Comparison of methods to determine Q in shallow marine sediments from vertical seismograms. Geophysical Prospecting 33: 479–497CrossRefGoogle Scholar
  41. Lambe T.W., Whitman R.V., 1969. Soil mechanics. John Wiley and Sons Inc, New York, 553 ppGoogle Scholar
  42. Lovell M.A., 1985. Thermal conductivity and permeability assessment by electrical resistivity measurements in marine sediments. Marine Geotechnology 6:205–240CrossRefGoogle Scholar
  43. MacKillop A.K., Moran K., Jarret K., Farrell J., Murray D., 1995. Consolidation properties of equatorial Pacific Ocean sediments and their relationship to stress history and offsets in the Leg 138 composite depth sections. In: Pisias N.G., Mayer L.A., Janecek T.R., Palmer-Julson A., van Andel T.H. (eds) Proceedings of the Ocean Drilling Program, Scientific Results 138, College Station, TX (Ocean Drilling Program), pp 357–369Google Scholar
  44. Mazullo J.M., Meyer A., Kidd R.B., 1988. New sediment classification scheme for the Ocean Drilling Program. In: Mazullo JM, Graham AG (eds) Handbook for Shipboard Sedimentologists, Technical Note 8, Ocean Drilling Program, College Station, Texas, pp 45–67Google Scholar
  45. Mendel J.M., Nahi N.E., Chan M., 1979. Synthetic seismograms using the state space approach. Geophysics 44: 880–895CrossRefGoogle Scholar
  46. O’Connell S.B., 1990. Variations in upper cretaceous and Cenozoic calcium carbonate percentages, Maud Rise, Weddell Sea, Antarctica. In: Barker P.F., Kennett J.P. et al. (eds) Proceedings of the Ocean Drilling Program, Scientific Results 113, College Station, TX (Ocean Program), pp 971–984Google Scholar
  47. Ogushwitz P.R., 1985. Applicability of the Biot theory. II. Suspensions. Journal of the Acoustical Society of America 77: 441–452CrossRefGoogle Scholar
  48. Olsen H.W., Nichols R.W., Rice T.C., 1985. Low gradient permeability measurements in a triaxial system. Geotechnique 35: 145–157CrossRefGoogle Scholar
  49. Plona T.J., 1980. Oberservation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Applied Physics Letters 36: 159–261CrossRefGoogle Scholar
  50. Ruffet C., Gueguen Y., Darot M., 1991. Complex conductivity measurements and fractal nature of porosity. Geophysics 56: 758–768CrossRefGoogle Scholar
  51. Schopper J.R., 1982. Permeability of rocks. In: Hellwege KH (ed) Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology, Group V: Geophysics and Space Research 1, Physical Properties of Rocks, Subvolume a, Berlin, Springer Verlag, Berlin, pp 278–303Google Scholar
  52. Schön J.H., 1996. Physical Properties of Rocks-Fundamentals and Principles of Petrophysics. Handbook of Geophysical Exploration 18, Section I, Seismic Exploration. Pergamon Press, Oxford, 583 ppGoogle Scholar
  53. Schultheiss P.J., McPhail S.D., 1989. An automated Pwave logger for recording fine-scale compressional wave velocity structures in sediments. In: Ruddiman W, Sarnthein M et al (eds), Proceedings of the Ocean Drilling Program, Scientific Results 108, College Station TX (Ocean Drilling Program), pp 407–413Google Scholar
  54. Sen P.N., Scala C., Cohen M.H., 1981. A self-similar model from sedimentary rocks with application to dielectric constant of fused glass beads. Geophysics 46: 781–795CrossRefGoogle Scholar
  55. Sheng P., 1991. Consistent modeling of electrical and elastic properties of sedimentary rocks. Geophysics 56, 1236–1243CrossRefGoogle Scholar
  56. Shipboard Scientific Party, 1995. Explanatory Notes. In: Curry W.B., Shackleton N.J., Richter C. et al. (eds), Proceedings of the Ocean Drilling Program, Initial Reports 154, College Station TX (Ocean Drilling Program), pp 11–38Google Scholar
  57. Siedler G., Peters H., 1986. Physical properties (general) of sea water. In: Hellwege K.H., Madelung O. (eds) Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology. Group V: Geophysics and Space Research 3, Oceanography, Subvolume a, Springer Verlag, Berlin, pp 233–264Google Scholar
  58. Spieß V., 1993. Digitale Sedimentechographie-Neue Wege zu einer hochauflösenden Akustostratigraphie. Ber. FB Geo Univ. Bremen 35: 199 ppGoogle Scholar
  59. Stoll R.D., 1974. Acoustic waves in saturated sediments. In: Hampton L. (ed) Physics of sound in marine sediments. Plenum Press, New York, pp 19–39Google Scholar
  60. Stoll R.D., 1977. Acoustic waves in ocean sediments. Geophysics 42: 715–725CrossRefGoogle Scholar
  61. Stoll R.D., 1989. Sediment Acoustics. Springer Verlag, Berlin, 149 ppGoogle Scholar
  62. Taner M.T., Koehler F., Sheriff R.E., 1979. Complex seismic trace analysis. Geophysics 44: 1041–1063CrossRefGoogle Scholar
  63. Tonn R., 1989. Comparison of seven methods for the computation of Q. Physics of the Earth and Planetary Interiors 55: 259–268CrossRefGoogle Scholar
  64. Tonn R., 1991. The determination of the seismic quality factor Q from VSP data: a comparison of different computational methods. Geophysical Prospecting 39:1–27CrossRefGoogle Scholar
  65. Waxman M.H., Smits L.J.M., 1968. Electrical conductivities in oil bearing shaly sandstones. Society of Petroleum Engineering 8: 107–122Google Scholar
  66. Weaver, P.P.E., Schultheiss P.J., 1990. Current methods for obtaining, logging and splitting marine sediment cores. Marine Geophysical Researches 12: 85–100CrossRefGoogle Scholar
  67. Weber M.E., Niessen F., Kuhn G., Wiedicke M., 1997. Calibration and application of marine sedimentary physical properties using a multi-sensor core logger. Marine Geology 136: 151–172CrossRefGoogle Scholar
  68. Weeks R., Laj C., Endignoux L., Fuller M., Roberts A., Manganne R., Blanchard E., Goree W., 1993. Improvements in long-core measurement techniques: applications in paleomagnetism and paleoceanography. Geophysical Journal International 114: 651–662Google Scholar
  69. Whitmarsh R.B., 1971. Precise sediment density determination by gamma-ray attenuation alone, Journal of Sedimentary Petrology 41: 882–883Google Scholar
  70. Wille P., 1986. Acoustical properties of the ocean. In: Hellwege KH, Madelung O (eds) Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology. Group V: Geophysics and Space Research 3, Oceanography, Subvolume a, Springer Verlag, Berlin, pp 265–382Google Scholar
  71. Wilson W.D., 1960. Speed of sound in sea water as a function of temperature, pressure and salinity. Journal of the Acoustical Society of America 32: 641–644CrossRefGoogle Scholar
  72. Wohlenberg J., 1982. Density of minerals. In: Hellwege K.H. (ed) Landolt-Börnstein. Numerical Data and Functional Relationships in Science and Technology. Group V: Geophysics and Space Research 1, Physical Properties of Rocks, Subvolume a, Springer Verlag, Berlin, pp 66–113Google Scholar
  73. Wood A.B., 1946. A textbook of sound. G Bell and Sons Ltd, London, 578 ppGoogle Scholar
  74. Wyllie M.R., Gregory A.R., Gardner L.W., 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics 21: 41–70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Monika Breitzke
    • 1
  1. 1.Alfred-Wegener-Institut für Polar- und MeeresforschungBremerhavenGermany

Personalised recommendations