Advertisement

Manganese: Predominant Role of Nodules and Crusts

  • Geoffrey P. Glasby

Keywords

Manganese Nodule Ferromanganese Crust Ferromanganese Nodule Insight Into Magellan Seamount 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abouchami, W., Goldstein, S.L., Galer, S.J.G., Eisenhauer, A. and Mangini, A., 1997. Secular changes in lead and neodymium in central Pacific seawater recorded in a Fe-Mn crust. Geochimica et Cosmochimica Acta, 61: 3957–3974.Google Scholar
  2. Albarède, F. and Goldstein, S.L., 1992. World map of Nd isotopes in sea-floor ferromanganese deposits. Geology, 20: 761–763.Google Scholar
  3. Aller, R.C., 1990. Bioturbation and manganese cycling in hemipelagic sediments. Philosophical Transactions of the Royal Society of London, A331: 51–68.Google Scholar
  4. Amos, A.F., Roels, O.A., Garside, C., Malone, T.C. and Paul, A.Z., 1977. Environmental aspects of nodule mining. In: Glasby, G.P. (ed), Marine manganese deposits. Elsevier, Amsterdam, pp. 391–437.Google Scholar
  5. Andreev, S.I. and Gramberg, I.S., 1998. The explanatory note to the metallogenic map of the world ocean. VNIIOkeanologia (St Petersburg) and InterOceanMetall (Szczecin), 212 pp. + illustrations (in English and Russian)Google Scholar
  6. Andreev, S.I. and Gramberg, I.S., 2002. Cobalt-rich ores of the world ocean. Ministry of Natural Resources of the Russian Federation and All-Russian Research Institute for Geology and Mineral Resources of the World Ocean, St. Petersburg, 167 pp. + appendix (in Russian with English abstract)Google Scholar
  7. Anon, 1979. La Genèse des nodules de manganese. Colloques Internationaux du Centre National de la Recherche Scientifique (CNRS), 287: 410 pp.Google Scholar
  8. Anon 1982. United Nations Convention on the Law of the Sea of 10 Dcember 1982 (http://www.un.org/Depts/los/index.htm.Convention_agreements/texts/unclos/unclos_e.pdf)Google Scholar
  9. Aplin, A.C. and Cronan, D.S., 1985. Ferromanganese deposits from the central Pacific Ocean, II. Nodules and asso-ciated sediments. Geochimica et Cosmochmica Acta, 49: 437–451.Google Scholar
  10. Banerjee, R., 2000. A documentation of burrows in hard substrates of ferromanganese crusts and associated soft sediments from the Central Indian Ocean Basin. Current Science, 79: 517–521.Google Scholar
  11. Barnes, S.S. and Dymond, J., 1967. Rates of accumulation of ferro-manganese nodules. Nature, 213: 1218–1219.Google Scholar
  12. Baturin, G.N., 1988. The geochemistry of manganese and manganese nodules in the ocean. D. Reidel, Dordrecht, 342 pp.Google Scholar
  13. Beard, D.L., Johnson, C.M., Von Damm, K.L. and Poulson, R.L., 2003. Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology, 31: 629–632.Google Scholar
  14. Bender, M.L., Klinkhammer, G.P. and Spencer, D.W., 1977. Manganese in seawater and the marine manganese balance. Deep-Sea Research, 24: 799–812.Google Scholar
  15. Berger, W.H., Fischer, K., Lai, C. and Wu, G., 1987. Ocean productivity and organic carbon flux. Scripps Institution of Oceanography Reference Series 87–30.Google Scholar
  16. Bernhard, H.-H. and Blissenbach, E., 1988. Economic importance. In: Halbach, P., Friedrich, G. and von Stackelberg, U. (eds), The manganese nodule belt of the Pacific Ocean Geological environment, nodule formation, and mining aspects. Enke Verlag, Stuttgart, pp. 4–9.Google Scholar
  17. Bischoff, J.L. and Piper, D.Z., 1979. Marine geology and oceanography of the Pacific manganese nodule province. Plenum Press, NY, 842 pp.Google Scholar
  18. Bischoff, J.L., Heath, G.R. and Leinen, M.L., 1979. Geochemistry of deep-sea sediments from the Pacific manganese nodule province: DOMES Sites A, B, and C. In: Bischoff, J.L. and Piper, D.Z. (eds), Marine geology and oceanography of the Pacific manganese nodule province. Plenum Press, NY, pp. 397–436.Google Scholar
  19. Böllhofer, A., Eisenhauer, A., Frank, N., Pech, D. and Mangini, A., 1996. Thorium and uranium isotopes in a manganese nodule from the Peru basin determined by alpha spectrometry and thermal ionization mass spectrometry (TIMS): Are manganese supply and growth related to climate? Geologische Rundschau, 85: 577–585.Google Scholar
  20. Böllhofer, A., Frank, N., Rohloff, S., Mangini, A. and Scholten, J.C., 1999. A record of changing redox conditions in the northern Peru Basin during the Late Quaternary deduced from Mn/Fe and growth rate variations in two diagenetic manganese nodules. Earth and Planetary Science Letters, 170: 403–415.Google Scholar
  21. Bruland, K.W., 1983. Trace elements in sea-water. In: Riley, J.P. and Chester, R. (eds), Chemical oceanography. Academic Press, London, pp. 157–220.Google Scholar
  22. Bruland, K.W., Orians, K.J. and Cowen, J.P., 1994. Reactive trace metals in the stratified central North Pacific. Geochimica et Cosmochimica Acta, 58: 3171–3182.Google Scholar
  23. Bruland, K.W. and Lohan, M.C., 2004. Controls of trace metals in seawater. In: Elderfield, H. (ed.), Treatise on geochemistry volume 6 The oceans and marine geochemistry. Elsevier, Amsterdam, pp. 23–47.Google Scholar
  24. Burgarth, K.P. and von Stackelberg, U., 1995. Sulfide-impregnated volcanics and ferromanganese incrustations from the southern Lau Basin (Southwest Pacific). Marine Georesources and Geotechnology, 13: 263–308.Google Scholar
  25. Burns, R.G. and Burns, V.M., 1977. Mineralogy. In: Glasby, G.P. (ed.), Marine manganese deposits. Elsevier, Amsterdam, pp. 185–248.Google Scholar
  26. Burns, R.G. and Burns, V.M., 1980. Manganese oxides. Reviews in Mineralogy, 6: 1–46.Google Scholar
  27. Burton, J.D. and Statham, P.J., 1988. Trace metals as tracers in the ocean. Philosophical Transactions of the Royal Society of London, A325: 127–145.Google Scholar
  28. Burton, K.W., Ling, H.-F. and O’Nions, R.K., 1997. Closure of the central American Isthmus and its effect on deep-water foand lacustrine nodules: Distribution and geochemistry. In: Glasby, G.P. (ed.), Marine manga-nese deposits. Elsevier, Amsterdam, pp. 45–86.Google Scholar
  29. Calvert, S.E. and Piper, D.Z., 1984. Geochemistry of ferromanganese nodules from DOMES Site A, Northern Equatorial Pacific: Multiple diagentic metal sources in the deep sea. Geochim. et Cosmochim. Acta, 48: 1913–1928.Google Scholar
  30. Calvert, S.E.., Piper, D.Z. and Baedecker, P.A., 1987. Geochemistry of the rare earth elements of ferromanganese nodules from DOMES Site A, northern equatorial Pacific. Geochimica et Cosmochimica Acta, 51: 2331–2338.Google Scholar
  31. Chabaux, F., Cohen, A.S., O’Nions, R.K. and Hein, J.R., 1995. 238U-234U-230Th chronometry of Fe-Mn crusts: Growth processes and recovery of thorium isotopic ratios of seawater. Geochimica et Cosmochimica Acta, 59: 633–638.Google Scholar
  32. Chabaux, F., O’Nions, R.K., Cohen, A.S. and Hein, J.R., 1997. 238U-234U-230Th disequilibrium in hydrogenous oceanic Fe-Mn crusts: Paleoceanographic record or diagenetic alteration? Geochimica et Cosmochimica Acta, 61: 3619–3632.Google Scholar
  33. Chen, J.C. and Owen, R.M., 1989. The hydrothermal component in ferromanganese nodules from the southeast Pacific Ocean. Geochimica et Cosmochimica Acta, 53: 1299–1305.Google Scholar
  34. Chester, R., 1990. Marine geochemistry. Chapman & Hall, London, 698 pp.Google Scholar
  35. Christensen, J.N., Halliday, A,.N., Godfrey, L.V., Hein, J.R. and Rea, D.K., 1997. Climate and ocean dynamics of lead isotope records in Pacific ferromanganese crusts. Science, 277: 913–918.Google Scholar
  36. Chukhrov, F.V., Gorshkov, A.I., Ermilova, L.P. et al., 1982. On mineral forms of manganese and iron occurrences in oceanic sediments. International Geological Review, 24: 466–480.Google Scholar
  37. Chukhrov, F.V., Gorshkov, A.I., Drits, V.A., Shterenberg, L.Ye., Sivtsov, A.V. and Sakharov, B.A., 1983. Mixed-layered asbolite-buserite minerals and asbolite in oceanic iron-manganese nodules. International Geological Review, 25: 838–847.Google Scholar
  38. Chukhrov, F.V., Gorshkov, A.I., and Drits, V.A., 1989. Supergene manganese oxides. Nauka, Moscow, 208 pp. (In Russian)Google Scholar
  39. Clarke, A., Church, J. and Gould, J., 2001. Ocean processes and climate phenomena. In: Siedler, G., Church, J. and Gould, J.J. (eds), Ocean circulation & climate observation and modeling of the global ocean. Academic Press, San Diego, pp. 11–30.Google Scholar
  40. Cowen, J.P. and Bruland, K.W., 1985. Metal deposits associated with bacteria: implications for Fe and Mn marine geochemistry. Deep-Sea Research, 32A: 253–272.Google Scholar
  41. Cowen, J.P., DeCarlo, E.H. and McGee, D.L., 1993. Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount. Marine Geology, 115: 289–306.Google Scholar
  42. Cronan, D.S., 1977. Deep-sea nodule: distribution and chemistry. In: Glasby, G.P. (ed.), Marine manganese deposits. Elsevier, Amsterdam, pp. 11–44.Google Scholar
  43. Cronan, D.S., 1980. Underwater minerals. Academic Press, London, 362 pp.Google Scholar
  44. Cronan, D.S., 1987. Controls on the nature and distribution of manganese nodules in the western equatorial Pacific Ocean. In: Teleki, P.G., Dobson, M.R., Moore, J.R. and von Stackelberg, U. (eds), Marine minerals Advances in research and resource assessment. D. Reidel, Dordrecht, pp. 177–188.Google Scholar
  45. Cronan, D.S., 1997. Some controls on the geochemical variability of manganese nodules with particular reference to the tropical South Pacific. In: Nicholson, K., Hein, J.R., Bühn, B. and Dasgupta, S. (eds), Manganese mineralization: Geochemistry and mineralogy of terrestrial and marine deposits. Geological Society Special Publication, 119: 139–151.Google Scholar
  46. Cronan, D.S. (ed.), 2000. Handbook of marine minerals. CRC Press, Boca Raton, Florida, 406 pp.Google Scholar
  47. Cronan, D.S. and Hodkinson, R.A., 1994. Element supply to surface manganese nodules along the Aitutaki-Jarvis Transect, South Pacific. Journal of the Geological Society of London, 151: 392–401.Google Scholar
  48. David, K., Frank, M., O’Nions, R.K., Belshaw, N.S. and Arden, J.W., 2001. The Hf isotopic composition of global seawater and the evolution of Hf isotopes in deep Pacifc Ocean from Fe-Mn crusts. Chemical Geology, 178: 23–42.Google Scholar
  49. Davies, T.A., 1985. Mesozoic and Cenozoic sedimentation in the Pacific Ocean Basin. In: Nairn, A.E.M., Stehli, F.G. and Uyeda, S. (eds), The ocean basins and margins 7A The Pacific Ocean. Plenum Press, NY, pp. 65–88.Google Scholar
  50. de Baar, H.W., Bacon, M.P., Brewer, P.G. and Bruland, K.W., 1985. Rare earth elements in the Pacific and Atlantic Oceans. Geochimica et Cosmochimica Acta, 49: 1943–1959.Google Scholar
  51. de Baar, H.J.W., de Jong, J.T.M., Bakker, D.C.E., Löscher, B.M., Veth, C., Bathmann, U. and Smetacek, V., 1995. Importance of iron for pankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature, 373: 412–415.Google Scholar
  52. De Carlo, E.H., 1991. Paleoceanographic implications of the rare earth element variabiliy within a Fe-Mn crust from the central Pacific Ocean. Marine Geology, 98: 449–467.Google Scholar
  53. De Carlo, E.H. and McMurtry, G.M., 1992. Rare-earth element geochemistry of ferromanganese crusts from the Hawaiian Archipelago, central Pacific. Chemical Geology, 95: 235–250.Google Scholar
  54. Dekov, V.M., Marchig, V., Rajita, I. and Uzonyi, I., 2003. Fe-Mn micronodules born in the metalliferous sediments of two spreading centres: the East Pacific Rise and Mid-Atlantic Ridge. Marine Geology, 199: 101–121.Google Scholar
  55. Dickens, G.R. 2004. Hydrocarbon-driven warming. Nature, 429: 513–515.Google Scholar
  56. Dillard, J.G., Crowther, D.L. and Calvert, S.E., 1984. X-ray photoelectron spectroscopic study of ferromanganese nodules: Chemical speciation for selected transition metals. Geochimica et Cosmochimica Acta, 48: 1565–1569.Google Scholar
  57. Dorgan, K.M., Jumars, P.A., Johnson, B., Boudreau, B.P. and Landis, E., 2005. Burrow extension by crack propagation. Nature, 433: 475.Google Scholar
  58. Drits, V.A., Silvester, E., Gorshkov, A.I. and Manceau, A., 1997. Structure of synthetic monoclinic Na-rich birnessite and hexagonal birnessite: I. Results from X-ray diffraction and selected-area electron diffraction. American Mineralogist, 82: 946–961.Google Scholar
  59. Dymond, J. and Eklund, W., 1978. A microprobe study of metalliferous sediment components. Earth and Planetary Science Letters, 40: 243–251.Google Scholar
  60. Dymond, J., Lyle, M., Finney, B., Piper, D.Z., Murphy, K., Conard, R. and Pisias, N., 1984. Ferromanganese nodules from MANOP Sites H, S, and R-Control of mineralogical and chemical composition by multiple accretionary processes. Geochimica et Cosmochimica Acta, 48: 931–949.Google Scholar
  61. Earney, F.F.C., 1990. Marine mineral resources. Routledge, London, 387 pp.Google Scholar
  62. Eckhardt, J.D., Glasby, G.P., Puchelt, H. and Berner, Z., 1997. Hydrothermal manganese crusts from Enareta and Palinuro seamounts in the Tyrrhenian Sea. Marine Georesources and Geotechnology, 15: 175–209.Google Scholar
  63. Edmond, J.M., Chung, Y. and Sclater, J.G., 1971. Pacific bottom water: Penetration east around Hawaii. Journal of Geophysical Research, 76: 8089–8097.Google Scholar
  64. Ehrlich, H.L., 1996. Geomicrobiology. Marcel Dekker, NY, 719 pp.Google Scholar
  65. Eisenhauer, A., Gögen, K., Pernicka, E. and Mangini, A., 1992. Climatic influences on the growth rates of Mn crusts during the Late Quaternary. Earth and Planetary Science Letters, 109: 25–36.Google Scholar
  66. Elderfield, H. and Schulz, A., 1996. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annual Review of Earth and Planetary Sciences, 24: 191–224.Google Scholar
  67. Finney, B., Heath, G.R. and Lyle, M., 1984. Growth rates of manganese-rich nodules at MANOP Site H (Eastern North Pacific). Geochimica et Cosmochimica Acta, 48: 911–919.Google Scholar
  68. Fitzwater, S.E., Coale, K.H., Gordon, M., Johnson, K.S. and Ondrusek, M.E., 1996. Iron deficiency and plankton growth in the equatorial Pacific. Deep-Sea Research, 43: 995–1015.Google Scholar
  69. Fleet, A.J. 1983. Hydrothermal and hydrogenous ferromanganese deposits: Do they form a continuum? In: Rona, P., Boström, K., Laubier, L. and Smith, K.L. (eds) Hydrothermal processes at seafloor spreading centers. NATO Conference Series, 12: 535–555.Google Scholar
  70. Frank, M., 2002. Radiogenic isotopes: Tracers of past ocean circulation and erosional input. Reviews of Geophysics, 40(1): Article number 1001.Google Scholar
  71. Frank, M., O’Nions, R.K., Hein, J.R. and Banakar, V.K., 1999a. 60 Myr records of major elements and Pd-Nd isotopes from hydrogenous ferromanganese crusts: reconstruction of seawater paleoceanography. Geochimica et Cosmochimica Acta, 63: 1689–1708.Google Scholar
  72. Frank, M., Reynolds, B.C. and O’Nions, R.K., 1999b. Nd and Pb isotopes in Atlantic and Pacific water masses before and after closure of the Panama gateway. Geology, 27: 1147–1150.Google Scholar
  73. Friedrich, G., Glasby, G.P., Thijssen, T. and Plüger, W.L., 1983. Morphological and geochemical characteristics of manganese nodules collected from three areas on an equatorial Pacific transect by R.V. Sonne. Marine Mining, 4: 167–253.Google Scholar
  74. Friedrich, G. and Schmitz-Wiechowski, A., 1980. Mineralogy and chemistry of a ferromanganese crust from a deep-sea hill, central Pacific, „VALDIVIA“ Cruise VA 13/2. Marine Geology, 37: 71–90.Google Scholar
  75. Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartmann, B. and Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta, 43: 1075–1090.Google Scholar
  76. Futa, K., Peteman, Z.E. and Hein, J.R., 1988. Sr and Nd isotopic variations in ferromanganese crusts from the Central Pacific: Implications for age and source provenance. Geochimica et Cosmochimica Acta, 52: 2229–2233.Google Scholar
  77. Garrels, R.M. and Christ, C.L., 1965. Solutions, minerals, and equilibria. Harper & Row, N.Y. 450 pp.Google Scholar
  78. German, C.R. and Angel, M.V., 1995. Hydrothermal fluxes of metal to the oceans: a comparison with anthropogenic discharges. In: Parson, L.M., Walker, C.L. and Dixon, D.R. (eds), Hydrothermal vents and processes. Geological Society Special Publication, 87: 365–372.Google Scholar
  79. German, C.R. and Von Damm, K.L., 2004. Hydrothermal processes. In: Elderfield, H. (ed.), Treatise on geochemistry volume 6 The oceans and marine geochemistry. Elsevier, Amsterdam, pp. 181–222.Google Scholar
  80. Gingele, F.X. and Kasten, S., 1994. Solid-phase manganese in Southeast Atlantic sediments: Implications for the paleoenvironment. Marine Geology, 121: 317–332.Google Scholar
  81. Giovanoli, R., 1980. On natural and synthentic manganese nodules. In: Varentsov, I.M. and Grasselly, Gy. (eds), Geology and geochemistry of manganese, volume 1. Hungarian Academy of Sciences, Budapest, pp. 159–202.Google Scholar
  82. Giovanoli, R., 1985. A review of the todorokite-buserite problem; implications to the mineralogy of marine manganese nodules: discussion. American Mineralogist, 70: 202–204.Google Scholar
  83. Giovanoli, R. and Bürki, P., 1975, Comparison of X-ray evidence of marine manganese nodules and non-marine manganese ore deposits. Chimia, 29: 266–269.Google Scholar
  84. Giovanoli, R. and Arrhenius, G., 1988. Structural chemistry of marine manganese and iron minerals and synthetic model compounds. In: Halbach, P., Friedrich, G. and von Stackelberg, U. (eds), The Manganese Nodule Belt of the Pacific Ocean Geological environment, nodule formation and mining aspects. Enke Verlag, Stuttgart, pp. 20–37.Google Scholar
  85. Glasby, G.P., 1972. The mineralogy of manganese nodules from a range of marine environments. Marine Geology, 13: 57–72.Google Scholar
  86. Glasby, G.P., 1973. Mechanism of enrichment of the rarer elements in marine manganese nodules. Marine Chemistry, 1: 105–125.Google Scholar
  87. Glasby, G.P., 1974. Mechanism of incorporation of manganese and associated trace elements in marine manganese nodules. Oceanography and Marine Biology: An Annual Review, 12: 11–40.Google Scholar
  88. Glasby, G.P. (ed), 1977. Marine manganese deposits. Elsevier, Amsterdam, 523 pp.Google Scholar
  89. Glasby, G.P., 1978. Deeep-sea manganese nodules in the stratigraphic record: Evidence from DSDP cores. Marine Geology, 28: 51–64.Google Scholar
  90. Glasby, G.P., 1983. The Three-Million-Tons-Per-Year Manganese Nodule „Mine Site“: An optimistic assumption? Marine Mining, 4: 73–77.Google Scholar
  91. Glasby, G.P., 1984. Manganese in the marine environment. Oceanography and Marine Biology: An Annual Review, 22: 169–194.Google Scholar
  92. Glasby, G.P., 1988. Manganese deposition through geological time: Dominance of the Post-Eocene environment. Ore Geology Reviews, 4: 135–144.Google Scholar
  93. Glasby, G.P., 1991. Mineralogy and geochemistry of Pacific red clays. N.Z. Journal of Geology and Geophysics, 34: 167–176.Google Scholar
  94. Glasby, G.P., 2000. Lessons learned from deep-sea mining. Science, 289: 551, 553.Google Scholar
  95. Glasby, G.P., 2002. Deep-seabed mining: Past failures and future prospects. Marine Georesources and Geotechnology, 20: 161–176.Google Scholar
  96. Glasby, G.P., Meylan, M.A., Margolis, S.V. and Bäcker, H., 1980. Manganese deposits of the Southwestern Pacific Basin. In: Varentsov, I.M. and Grasselly, Gy. (eds), Geology and geochemistry of manganese, volume 3. Hungarian Academy of Sciences, Budapest, pp. 137–183.Google Scholar
  97. Glasby, G.P. and Thijssen, T., 1982. Control of the mineralogy and composition of the manganese nodules by the supply of divalent transition metal ions. Neues Jahrbuch für Mineralogie Abhandlung, 145: 291–307.Google Scholar
  98. Glasby, G.P., Friedrich, G.; Thijssen, T.; Plüger, W.L., Kunzendorf, H., Ghosh, A.K. and Roonwal, G.S., 1982: Distribution, morphology, and geochemistry of manganese nodules from the Valdivia 13/2 area, equatorial North Pacific. Pacific Science, 36: 241–263.Google Scholar
  99. Glasby, G.P., Stoffers, P., Sioulas, A., Thijssen, T. and Friedrich, G., 1983. Manganese nodule formation in the Pacific Ocean: a general theory. Geo-Marine Letters, 2: 47–53.Google Scholar
  100. Glasby, G.P., Gwozdz, R., Kunzendorf, H., Friedrich, G. and Thijssen, T., 1987. The distribution of rare earth and minor elements in manganese nodules and sediments from the equatorial and S.W. Pacific. Lithos, 20: 97–113.Google Scholar
  101. Glasby, G.P., Uscinowicz, S.Z. and Sochan, J.A., 1996. Marine ferromanganese concretions from the Polish exclusive economic zone: Influence of Major Inflows of North Sea Water. Marine Georesources and Geotechnology, 14: 335–352.Google Scholar
  102. Glasby, G.P., Emelyanov, E.M., Zhamoida, V.A., Baturin, G.N., Leipe, T., Bahlo, R. and Bonacker, P., 1997a. Environments of formation of ferromanganese concretions in the Baltic Sea: a critical review. In: Nicholson, K., Hein, J.R., Bühn B. and Dasgupta, S. (eds), Manganese mineralization: Geochemistry and mineralogy of terrestrial and marine deposits. Geological Society Special Publication, 119: 213–237.Google Scholar
  103. Glasby, G.P., Stüben, D., Jeschke, G., Stoffers, P. and Garbe-Schönberg, C.-D., 1997b. A model for the formation of hydrothermal manganese crusts from the Pitcairn Island hotspot. Geochim. et Cosmochim. Acta, 61: 4583–4597.Google Scholar
  104. Glasby, G.P. and Schulz, H.D., 1999. EH, pH diagrams for Mn, Fe, Co, Ni, Cu and As under seawater conditions: Application of two new types of EH, pH diagrams to the study of specific problems in marine geochemistry. Aquatic Geochemistry, 5: 227–248.Google Scholar
  105. Glasby, G.P., Papavassiliou, C.T., Mitsis, J., Valsami-Jones, E., Liakopoulos, A. and Renner, R.M., 2004. The Vani manganese deposit, Milos island, Greece: A fossil stratabound Mn-Ba-Pb-Zn-As-Sb-W-rich hydrothermal deposit. In: Fytikas, M. and Vougioukalakis, G. (eds), The South Aegean Volcanic Arc Present knowledge and future perspectives. Developments in Volcanology, Elsevier, Amsterdam (in press)Google Scholar
  106. Gordon, A.L. and Gerard, R.D., 1970. North Pacific bottom potential temperatures. In: Hayes, J.D. (ed.), Geological investigations of the North Pacific. Geological Society of America Memoir, 126, pp. 23–39.Google Scholar
  107. Graham, I.J., Carter, R.M., Ditchburn, R.G. and Zondervan, A., 2004. Chronostratigraphy of ODP 181, Site 1121 sediment core (Southwest Pacific Ocean), using 10Be/9Be dating of trapped ferromanganese nodules. Marine Geology, 205: 227–247.Google Scholar
  108. Gromet, L.P., Dymek, R.F., Haskin, L.A., and Korotev, R.L., 1984. The „North American Shale Composite“: its compilation, major and trace element characteristics. Geochimica et Cosmochimica Acta, 48: 2469–2482.Google Scholar
  109. Halbach, P., Marchig, V. and Scherhag, C., 1980. Regional variations in Mn, Cu, and Co of ferromanganese nodules from a basin in the Southeast Pacific. Marine Geology, 38: M1–M9.Google Scholar
  110. Halbach, P., Scherhag, C., Hebisch, U. and Marchig, V., 1981. Geochemical and mineralogical control of different genetic types of deep-sea nodules from Pacific Ocean. Mineral Deposita, 16: 59–84.Google Scholar
  111. Halbach, P. and Puteanus, D., 1984. The influence of the carbonate dissolution rate on the growth and composition of Co-rich ferromanganese crusts from the central Pacific seamount areas. Earth and Planetary Science Letters, 68: 73–87.Google Scholar
  112. Halbach, P., Friedrich, G. and von Stackelberg, U. (eds), 1988. The Manganese Nodule Belt of the Pacific Ocean geological environment, nodule formation, and mining aspects. Enke Verlag, Stuttgart, 254 pp.Google Scholar
  113. Halbach, P., Kriete, C., Prause, B. and Puteanus, D., 1989. Mechanism to explain the platinum concentration in ferromanganese seamount crusts. Chemical Geology, 76: 95–106.Google Scholar
  114. Han, X., Jin, X., Yang, S., Fietzke, J. and Eisenhauer, A., 2003. Rhythmic growth of Pacific ferromanganese nodules and their Milankovitch climatic origin. Earth and Planetary Science Letters, 211: 143–157Google Scholar
  115. Harada, K. and Nishida. S. 1976. Biostratigraphy of some marine manganese nodules. Nature, 260: 770–771.Google Scholar
  116. Harada, K. and Nishida. S. 1976. Biochronology of some Pacific manganese nodules and their growth histories. Colloques Internationaux du C.N.R.S. No 289 — La Genèse des Nodules de Manganèse, pp. 211–216.Google Scholar
  117. Hastings, D. and Emerson, M., 1986. Oxidation of manganese by spores of a marine bacillus: Kinetics and thermodynamic considerations. Geochimica et Cosmochimica Acta, 50: 1819–1824.Google Scholar
  118. Hayes, S.P., 1979. Benthic currents observations at DOMES sites A, B, and C in the tropical North Pacific Ocean. In: Bischoff, J.L. and Piper, D.Z. (eds), Marine geology and oceanography of the Pacific manganese nodule province. Plenum Press, NY, pp. 83–112.Google Scholar
  119. Hayes, S.P., 1988. Benthic currents in the deep ocean. In: Halbach, P., Friedrich, G. and von Stackelberg, U. (eds), The manganese nodule belt of the Pacific Ocean Geological environment, nodule formation, and mining aspects. Enke Verlag, Stuttgart, pp. 99–102.Google Scholar
  120. Heath, G.R., 1981. Ferromanganese nodules of the deep sea. Economic Geology, 75: 736–76Google Scholar
  121. Hein, J.R., 2004. Cobalt-rich ferromanganese crusts: Global distribution, composition, origin and research activities. In: Minerals other than polymetallic nodules of the international seabed area Proceedings of a workshop held on 26–30 June 2000 in Kingston, Jamaica Volume 1, pp.188–272 (http//:www.isa.org.jm)Google Scholar
  122. Hein, J.R., Morgenson, L.A., Clague, D.A. and Koski, R.A., 1987. Cobalt-rich ferromanganese crusts from the exclusive economic zone of the United States and nodules from the oceanic Pacific. In: Scholl, D.W., Grantz, A. and Vedder, J.G. (eds), Geology and resource potential of the continental margin of western North America and the adjacent oceans-Beaufort Sea to Baja California. Circum-Pacific Council for Energy and Mineral Recources, Earth Science Series, Houston, Texas, pp. 753–771.Google Scholar
  123. Hein, J.R., Schwab, W.C. and Davis, A.S., 1988. Cobalt-and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands. Marine Geology, 78: 255–283.Google Scholar
  124. Hein, J.R., Yeh, H.-W., Gunn, S.H., Sliter, W.H., Benninger, L.M. and Wang, C.-H., 1993. Two major episodes of Cenozoic phosphogenesis recorded in equatorial Pacific seamount deposits. Paleoceanography, 8: 292–311.Google Scholar
  125. Hein, J.R., Gibbs, A.E., Clague, D.A. and Torresan, M., 1996. Hydrothermal mineralization along submarine rift zones, Hawaii. Marine Georesources and Geotechnology, 14: 177–203.Google Scholar
  126. Hein, J.R., Koschinsky, A., Bau, M., Manheim, F.T., Kang, J.-K., and Roberts, L., 2000. Cobalt-rich ferromanganese crusts in the Pacific. In: Cronan, D.S. (ed), Handbook of marine minerals. CRC Press, Boca Raton, Florida, pp. 239–279.Google Scholar
  127. Hem, J.D., Roberson, C.E. and Lind, C.J., 1985. Thermodynamic stability of CoOOH and its coprecipitation with manganese. Geochim. et Cosmochim. Acta, 49: 801–810.Google Scholar
  128. Heye, D., 1978. Changes in the growth rate of manganese nodules from the Central Pacific in the area of a seamount as shown by the Io nethod. Marine Geology, 28: M59–M65.Google Scholar
  129. Hlawatsch, S., 1999. Mn-Fe-Akkumulate als Indikator für Schadund Nährstoffflüsse in der westlichen Ostsee. Geomar Report 85, Geomar Research Center, Kiel (with English abstract)Google Scholar
  130. Hlawatsch, S., Neumann, T., van der Berg, C.M.G., Kersten, M., Harff, J., and Suess, E., 2002. Fast-growing shallow-water ferro-manganese nodules from the western Baltic Sea: origin and modes of trace element incorporation. Marine Geology, 182: 373–387.Google Scholar
  131. Hodge, V.F., Stallard, M., Koide, M. and Goldberg, E.D., 1985. Platinum and platinum anomaly in the marine environment. Earth and Planetary Science Letters, 72: 158–162.Google Scholar
  132. Hogg, N.G., 2001. Quantification of the deep circulation. In: Siedler, G., Church, J. and Gould, J.J. (eds), Ocean circulation & climate observation and modeling of the global ocean. Academic Press, San Diego, pp. 259–270.Google Scholar
  133. Horn, D.R. (ed.), 1972. Ferromanganese deposits of the ocean floor. National Science Foundation, Washington, D. C., 293 pp.Google Scholar
  134. Huh, C-A. and Ku, T.-L. 1984. Radiochemical observations on manganese nodules from three sedimentary environments in the North Pacific. Geochimica et Cosmochimica Acta, 48: 951–963.Google Scholar
  135. Ito, T., Usui, A., Kajiwara, Y., Nakano, T., 1998. Strontium isotopic composition and paleoceanographic implcation of fossil manganese nodules in DSDP/ODP cores, Leg 1–126. Geochimica et Cosmochimica Acta, 62: 1545–1554.Google Scholar
  136. Jauhari, P. and Pattan, J.N., 2000. Ferromanganese nodules from the Central Indian Ocean Basin. In: Cronan, D.S. (ed.), Handbook of marine minerals. CRC Press, Boca Raton, Florida, pp. 171–195.Google Scholar
  137. Jeong, K.S., Kang, J.K. and Chough, S.K., 1994. Sedimentary processes and manganese nodule formation in the Korea Deep Ocean Study (KODOS) area, western part of Clarion-Clipperton fracture zones, northeast equatorial Pacific. Marine Geology, 122: 125–150.Google Scholar
  138. Jeong, K.S., Kang, J.K., Lee, K.Y. Jung, H.S., Chi, S.B. and Ahn, S.J., 1996. Formation and distribution of manganese nodule deposits in the western margin of Clarion-Clipperton fracture zones, northeast equatorial Pacific. Geo-Marine Letters, 16: 123–131.Google Scholar
  139. Jeong, K.S., Jung, H.S., Kang, J.K., Morgan, C.L. and Hein, J.R., 2000. Formation of ferromanganese crusts on northwest intertropical Pacific seamounts: electron photomicrography and microprobe chemistry. Marine Geology, 162: 541–559.Google Scholar
  140. Johnson, C.E. and Glasby, G.P., 1969. Mössbauer Effect determination of particle size in microcrystalline iron-manganese nodules. Nature, 222: 376–377.Google Scholar
  141. Johnson, D.A., 1972. Eastward-flowing bottom currents along the Clipperton Fracture Zone. Deep-Sea Research, 19: 253–257Google Scholar
  142. Johnson, K.S., Coale, K.H., Berelson, W.M. and Gordon, R.M., 1996. On the formation of the manganese maximum in the oxygen minimum. Geochimica et Cosmochimica Acta, 60: 1291–1299.Google Scholar
  143. Johnson, K.S., Gordon, R.M. and Coale, K.H., 1997. What controls dissolved iron concentrations in the world ocean? Marine Chemistry, 57: 137–161.Google Scholar
  144. Johnston, J.H. and Glasby, G.P., 1978. The secondary iron oxidehydroxide mineralogy of some deep sea and fossil manganese nodules: A Mössbauer and X-ray study. Geochemical Journal, 12: 153–164.Google Scholar
  145. Johnston, J.H. and Glasby, G.P., 1982. A Mössbauer spectroscopic and X-ray diffraction study of the iron mineralogy of some sediments from the Southwest Pacific Basin. Marine Chemistry, 11: 437–448.Google Scholar
  146. Jung, H.-S. and Lee, C.-P., 1999. Growth of diagenetic ferromanganese nodules in an oxic deep-sea environment, northeast Pacific. Marine Geology, 157: 127–144.Google Scholar
  147. Kadko, D. and Burckle, L.H., 1980. Manganese growth rates determined by fossil diatom dating. Nature, 287: 725–726.Google Scholar
  148. Kasten, S., Glasby, G.P., Schulz, H., Friedrich, G. and Andreev, S.I., 1998. Rare earth elements in manganese nodules from the South Atlantic Ocean as indicators of oceanic bottom water flow. Marine Geology, 146: 33–52.Google Scholar
  149. Knie, K., Korschinek, G., Faestermann, T., Dorfi, E.A., Rugel, G and Wallner, A., 2004. 60Fe anomaly in a deep-sea manganese crust and implications for a nearby supernova source. Physical Review Letters, 93: 171103.Google Scholar
  150. Knoop, P.A., Owen, R.M. and Morgan, C.L., 1998. Regional variability in ferromanganese nodule composition: northeastern tropical Pacific Ocean. Marine Geology, 147: 1–12.Google Scholar
  151. Köning, I., Drodt, M., Suess, E. and Trautwein, A.X., 1997. Iron reduction through the tan-green color transition in deep-sea sediments. Geochimica et Cosmochimmica Acta, 61: 1679–1683.Google Scholar
  152. Kontar, E.A. and Sokov, A.V., 1994. A benthic storm in the northeastern tropical Pacific over fields of manganese nodules. Deep-Sea Research I, 41: 1069–1089.Google Scholar
  153. Koschinsky, A. and Halbach, P., 1995. Sequential leaching of marine ferromanganese precipitates: Genetic implications. Geochimica et Cosmochimica Acta, 59: 5113–5132.Google Scholar
  154. Koschinsky, A. and Hein, J.R., 2003. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Marine Geology, 198: 331–351.Google Scholar
  155. Koschinsky, A., Halbach, P., Hein, J.R. and Mangini, A., 1996. Ferromanganese crusts as indicators for paleoceanographic events in the NE Atlantic. Geologische Rundschau, 85: 567–576.Google Scholar
  156. Koschinsky, A., Stascheit, A.-M., Bau, M. and Halbach, P., 1997. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts. Geochimica et Cosmochimica Acta, 61: 4079–4094.Google Scholar
  157. Kotlinski, R., 1995. InterOceanMetal Joint Organization: Archievements and Challenges. Proceedings of the ISOPE (The International Society of Offshore and Polar Engineers)-Ocean Mining Symposium, Tsukuba, Japan, November 21–22, 5–7.Google Scholar
  158. Krishnaswamy, S., 1976. Authigenic transition elements in Pacific pelagic clays. Geochimica et Cosmochimica Acta, 40: 425–435.Google Scholar
  159. Ku, T.-L. and Glasby, G.P., 1972. Radiometric evidence for the rapid growth rates of shallow-water, continental margin manganese nodules. Geochimica et Cosmochimica Acta, 36: 699–703.Google Scholar
  160. Ku, T.-L., 1977. Rates of accretion. In: Glasby, G.P. (ed.) Marine manganese deposits. Elsevier, Amsterdam, pp. 249–267.Google Scholar
  161. Kuma, K., Usui, A., Paplawsky, W., Gedulin, B. and Arrhenius, G., 1994. Crystal structures of synthetic 7 Å and 10 Å manganates substituted by mono — and divalent cations. Mineralogical Magazine, 58: 425–447.Google Scholar
  162. Kunzendorf, H., Glasby, G.P., Stoffers, P. and Plüger, W.L., 1993. The distribution of rare earth and minor elements in manganese nodules, micronodules and sediments along an east-west transect in the southern Pacific. Lithos, 30: 45–56.Google Scholar
  163. Kusukabe, M. and Ku, T.L., 1984. Incorporation of Be isotopes and other trace metals into marine ferromanganese deposits. Geochimica et Cosmochimica Acta, 48: 2187–2193.Google Scholar
  164. Lalou, C., Brichet, E., Jehanno, C. and Perez-Leclaire, H., 1983. Hydrothermal manganese oxide deposits from Galapagos mounds, DSDP Leg 70, hole 509B and „Alvin“ dives 729 and 721. Earth and Planetary Science Letters, 63:63–75.Google Scholar
  165. Lavasseur, S., Frank, M., Hein, J.R. and Halliday, A.N., 2004. The global variation in the iron isotope composition of marine hydrogenetic ferromanganese deposits: impliations for seawater chemistry? Earth and Planetary Science Letters, 224: 91–105.Google Scholar
  166. Lavelle, J.W., Cowen, J.P. and Massoth, G.J., 1992. A model for the deposition of hydrothermal manganese near mid-ocean ridge crests. Journal of Geophysical Research, 97: 7413–7427.Google Scholar
  167. Lee, D.-C., Halliday, A.N., Hein, J.R., Burton, K.W., Christensen, J.N. and Günther, D., 1999. Hafnium isotope stratigraphy of ferromanganese crusts. Science, 285: 1052–1054.Google Scholar
  168. Lei, G., 1996. Crystal structure and metal uptake capacity of 10 Å-manganates: An overview. Marine Geology, 133: 103–112.Google Scholar
  169. Lenoble, J.-P., 2004. A comparison of the possible economic returns from mining deep-sea polymetallic nodules, sea floor massive sulphides and cobalt-rich crusts. Proceedings of a workshop held on 26–30 June 2000 in Kingston, Jamaica Volume 1, pp. 424–465 (http//: www.isa.org.jp)Google Scholar
  170. Liebetrau, V., Eisenhauer, A., Gussone, N., Wörner, G., Hansen, B.T., Leipe, T., 2002. Ra/Ba growth rates and U-Th-Ba systematics of Baltic Fe-Mn crusts. Geochimica et Cosmochimica Acta, 66: 73–83.Google Scholar
  171. Lilley, M.D., Feely, R.A. and Trefry, J.H., 1995. Chemical and biochemical transformations in hydrothermal plumes. In: Humphris, S.E. Zierenberg, R.A., Mullineaux, L.S. and Thompson, R.E. (eds), Seafloor Hydrothermal systems: Physical, chemical, biological, and geological interactions. American Geophysical Union Geophysical Monogrograph, 91: 369–391.Google Scholar
  172. Ling, H.F., Burton, K.W., O’Nions, R.K., Kamber, B.S., von Blanckenberg, F., Gibb, A.J. and Hein, J.R., 1997. Evolution of Nd and Pb isotopes in central Pacific seawater from ferromanganese crusts. Earth and Planetary Science Letters, 146: 1–12.Google Scholar
  173. Lonsdale, P., 1976. Abyssal circulation of the southeastern Pacific and some geological implications. Journal of Geophysical Research, 81: 1163–1176.Google Scholar
  174. Lonsdale, P., 1981. Drifts and ponds of reworked pelagic sediment in part of the Southwest Pacific. Marine Geology, 43: 153–193.Google Scholar
  175. Lupton, J., 1998. Hydrothermal helium plumes in the Pacific Ocean. Journal of Geophysical Research, 103: 15,835–15,868.Google Scholar
  176. Lyle, M., 1983. The brown-green color transition in marine sediments: A marker of the Fe(III)-Fe(II) redox boundary. Limnology and Oceanography 28: 1026–1033.Google Scholar
  177. Lyle, M., Owen, R.M. and Leinen, M., 1986. History of hydrothermal sedimentation at the East Pacific Rise, 19†S. In: Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, D.C., 92: 585–596.Google Scholar
  178. McCave, I.N., 1988. Biological pumping upwards of the coarse fraction of deep-sea sediments. Journal of Sedimentary Petrology, 58: 148–158.Google Scholar
  179. Macdonald, K.C. and Hollister, C.D., 1973. Near-bottom thermocline in the Samoan Passage, west equatorial Pacific. Nature, 241: 461–462.Google Scholar
  180. McMurtry, G.M., von der Haar, D.L., Eisenhauer, A., Mahoney, J.J. and Yeh, H.W., 1994. Cenozoic accumu-lation history of a Pacific ferromanganese crust. Earth and Planetary Science Letters, 125: 105–118.Google Scholar
  181. Manceau, A., Llorca, S. and Calas, G., 1987. Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia. Geochimica et Cosmochimica Acta, 51: 105–113.Google Scholar
  182. Manceau, A., Gorshkov, A.I. and Drits, V.A., 1992a. Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part I. Information from EXAFS spectroscopy. American Mineralogist, 77: 1133–1143.Google Scholar
  183. Manceau, A., Gorshkov, A.I. and Drits, V.A., 1992b. Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part II. Information from EXAFS spectroscopy and electron and X-ray diffraction. American Mineralogist, 77: 1144–1157.Google Scholar
  184. Manceau, A., Drits, V.A., Silvester, E., Bartoli, C. and Lanson, B., 1997. Structural mechanism of Co2+ oxida-tion by the phyllomanganate buserite. American Mine-ralogist, 82: 1150–1175.Google Scholar
  185. Manceau, A., Lanson, B. and Drits, V.A., 2002. Structure of heavy metal sorbed birnessite. Part III. Results from powder and polarized extended X-ray absorption fine structure spectroscopy. Geochimica et Cosmochimica Acta, 66: 2639–2663.Google Scholar
  186. Mandernack, K.W., Post, J. and Tebo, B.M., 1995. Manganese mineral formation by bacterial spores of the marine Bacillus, strain SG-1: Evidence for the direct oxidation of Mn(II) to Mn(IV). Geochimica et Cosmochimica Acta, 59: 4393–4408.Google Scholar
  187. Mangini, A., 1988. Growth rates of manganese nodules and crusts. In: Halbach, P., Friedrich, G. and von Stackelberg, U. (eds), The Manganese Nodule Belt of the Pacific Ocean Geological environment, nodule formation, and mining aspects. Enke Verlag, Stuttgart, pp. 142–151.Google Scholar
  188. Mangini, A., Dominik, J., Muller, P.J and Stoffers, P., 1982. Pacific deep circulation: A velocity increase at the end of the interglacial stage 5? Deep-Sea Research, 29A: 1517–1530.Google Scholar
  189. Mangini, A., Halbach, P., Puteanus, D. and Segl, M., 1987. Chemistry and growth history of Central Pacific Mn — crusts and their economic importance. In: Teleki, P.G., Dobson, M.R., Moore, J.R. and von Stackelberg, U. (eds), Marine minerals Advances in research and resource assessment. D. Reidel, Dordrecht, pp. 205–220.Google Scholar
  190. Mangini, A., Eisenhauer, A. and Walter, P., 1990a. Response of manganese in the ocean to climate change in the Quaternary. Paleoceanography, 5: 811–821.Google Scholar
  191. Mangini, A., Segl, M., Glasby, G.P, Stoffers, P. and Plüger, W.L., 1990b. Element accumulation rates in and growth histories of manganese nodules from the Southwestern Pacific Basin. Marine Geology, 94: 97–107.Google Scholar
  192. Manheim, F.T., 1986. Marine cobalt resources. Science, 232: 600–608.Google Scholar
  193. Manheim, F.T. and Lane-Bostwick, C.M., 1988. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor. Nature, 335: 59–62.Google Scholar
  194. Mantyla, A.W., 1975. On the potential temperature in the abyssal Pacific Ocean. Journal of Marine Research, 33: 341–354.Google Scholar
  195. Marchig, V., 2000. Hydrothermal activity on the southern, ultrafast-spreading segment of the East Pacific Rise. In: Cronan, D.S. (ed.), Handbook of marine minerals. CRC Press, Boca Raton, Florida, pp. 309–325.Google Scholar
  196. Marchig, V. and Erzinger, J., 1986. Chemical composition of Pacific sediments near 20†S: changes with increasing distance from the East Pacific Rise. In: Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, D.C., pp. 371–381.Google Scholar
  197. Marcus, M.A., Manceau, A. and Kersten, M., 2004. Mn, Fe, Zn and As speciation in a fast growing ferromanganese marine nodule. Geochimica et Cosmochimica Acta, 68: 3125–3136.Google Scholar
  198. Martin, J.H., Knauer, G.A. and Broenkow, W.W., 1985. VERTEX: the lateral transport of manganese in the northeast Pacific. Deep-Sea Research, 32: 1405–1427.Google Scholar
  199. Medford, R.D., 1969. Marine mining in Britain. Mining Magazine, 121(5): 369–381 and 121(6): 474–480.Google Scholar
  200. Mellin, T.A. and Lei, G., 1993. Stabilization of 10 Å-manganates by interlayer cations and hydrothermal treatment: Implications for the mineralogy of marine manganese concretions. Marine Geology, 115: 67–83.Google Scholar
  201. Mero, J.L., 1965. Mineral resources of the sea. Elsevier, Amsterdam, 312 pp.Google Scholar
  202. Mero, J.L., 1977. Economic aspects of nodule mining. In: Glasby, G.P. (ed.), 1977. Marine manganese deposits. Elsevier, Amsterdam, pp. 327–355.Google Scholar
  203. Meylan, M.A., Glasby, G.P., McDougall, J.C. and Kumbalek, S.C., 1982. Lithology, colour, mineralogy, and geochemistry of marine sediments from the Southwestern Pacific and Samoan Basin. New Zealand Journal of Geology and Geophysics, 25: 437–458.Google Scholar
  204. Meylan, M.A., Glasby, G.P., Hill, P.J., McKelvey, B.C., Walter, P. and Stoffers, P., 1990. Manganese crusts and nodules from the Manihiki Plateau and adjacent areas: Results of HMNZS Tui cruises. Marine Mining, 9: 43–72.Google Scholar
  205. Michard, G. and Albarède, F. 1986. The REE content of some hydrothermal fluids. Chemical Geology, 55: 51–60.Google Scholar
  206. Miller, S. and Cronan, D.S., 1994. Element supply to surface sediments and interrelationships with nodules along the Aitutaki-Jarvis Transect, South Pacific. Journal of the Geological Society of London, 151: 403–412.Google Scholar
  207. Moore, J.G. and Clague, D.A., 2004. Hawaiian submarine manganese-iron oxide crusts — A dating tool? GSA Bulletin, 116: 337–347.Google Scholar
  208. Morgan, C.L., 2000. Resource estimates of the Clarion-Clipperton manganese nodule deposits. In: Cronan, D.S. (ed.), Handbook of marine minerals. CRC Press, Boca Raton, Florida, pp. 145–170.Google Scholar
  209. Morgan, J.J., 2005. Kinetics of reaction between oxygen and Mn(II) species in aqueous solutions. Geochimica et Cosmochimica Acta, 69: 35–48.Google Scholar
  210. Mukhopadhyay, R., Iyer, S.D. and Ghosh, A.K., 2002. The Indian Ocean Nodule Field: petrotectonic evolution and ferromanganese deposits. Earth-Science Reviews, 60: 67–130.Google Scholar
  211. Müller, P.J., Hartmann, M. and Suess, E., 1988. The chemical environment of pelagic sediments. In: Halbach, P., Friedrich, G. and von Stackelberg, U. (eds), The manganese nodule belt of the Pacific Ocean Geological environment, nodule formation, and mining aspects. Enke Verlag, Stuttgart, pp. 70–99.Google Scholar
  212. Murray, J.W. and Brewer, P.G., 1977. Mechanism of removal of manganese, iron and other trace metals from seawater. In: Glasby, G.P. (ed), Marine manganese deposits. Elsevier, Amsterdam, pp. 291–325.Google Scholar
  213. Murray, J.W., Balistrieri, L.S. and Paul, B., 1984. The oxidation state of manganese in marine sediments and ferromanganese nodules. Geochimica et Cosmochimica Acta, 48: 1237–1247.Google Scholar
  214. Nemoto, K. and Kroenke, L.W., 1981. Marine geology of the Hess Rise 1. Bathymetry, surface sediment distribution and environment of deposition. Journal of Geophysical Research, 86: 10734–10752.Google Scholar
  215. Nicholson, K., Hein, J.R., Bühn, B. and Dasgupta S. (eds), 1997. Manganese mineralization: Geochemistry and mineralogy of terrestrial and marine deposits. Geological Society Special Publication, 119: 370 pp.Google Scholar
  216. Norris, R.D. and Röhling, U., 1999. Carbon cycling and chronology of climate warming at the Palaeocene/Eocene transition. Nature, 401: 775–778.Google Scholar
  217. Nozaki, Y., 1997. A fresh look at element distribution in the North Pacific. EOS Transactions of the American Geophysical Union, 78: 221.Google Scholar
  218. O’Nions, R.K., Frank, M., von Blanckenburg, F. and Ling, H.F., 1998. Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Oceans. Earth and Planetary Science Letters, 155: 15–28.Google Scholar
  219. Overnell, J., 2002. Manganese and iron profiles during early diagenesis in Loch Etive, Scotland. Application of two diagenetic models. Estuarine, Coastal and Shelf Science, 54: 33–44.Google Scholar
  220. Overnell, J., Harvey, S.M. and Parkes, R.J., 1996. A biogeochemical comparison of sea loch sediments: Manganese and iron contents, sulphate reduction rates and oxygen uptake rates. Oceanologica Acta, 19: 41–55.Google Scholar
  221. Overnell, J., Brand, T., Bourgeois, W. and Statham, P.J., 2002. Manganese dynamics in the water column of the upper basin of Loch Etive, a Scottish fjord. Estuarine, Coastal and Shelf Science, 55: 481–492.Google Scholar
  222. Piper, D.Z. and Williamson, M.E., 1977. Composition of Pacific Ocean ferromanganese nodules. Marine Geology., 23: 285–303.Google Scholar
  223. Piper, D.Z. and Blueford, J.R., 1982. Distribution, mineralogy, and texture of manganese nodules and their relation to sedimentation at the DOMES Site A in the equatorial North Pacific. Deep-Sea Research, 29A: 927–952.Google Scholar
  224. Piper, D.Z., Basler, J.R. and Bischoff, J.L., 1984. Oxidation state of marine manganese nodules. Geochimica et Cosmochimica Acta, 48: 2347–2355.Google Scholar
  225. Piper, D.Z., Swint, T.R., Sullivan, L.G. and McCoy, F.W., 1985. Manganese nodules, seafloor sediment, and sedimentation rates in the Circum-Pacific region. Circum-Pacific Council for Energy and Mineral Resources Circum-Pacific Map Project. American Association of Petroleum Geologists, Tulsa, Oklahoma.Google Scholar
  226. Piper, D.Z., Swint-Iki, T.R. and McCoy, F.W., 1987. Distribution of ferromanganese nodules in the Pacific Ocean. Chemie der Erde, 46: 171–184.Google Scholar
  227. Plüger, W.L., Friedrich, G. and Stoffers, P., 1985. Environmental controls of the formation of deep-sea ferromanganese concretions. Monograph Series on Mineral Deposits, 25: 31–52.Google Scholar
  228. Plunkert, P.A. and Jones, T.S, 1999. Metal prices in the United States through 1998. USGS. 181 pp. (http://minerals.usgs.gov/minerals/pubs/metal_prices)Google Scholar
  229. Post, J.E., 1999. Manganese oxide minerals: crystal structures and environmental significance. Proceedings of the National Academy of Science of the USA, 96: 3447–3454.Google Scholar
  230. Pulyaeva, I., 1997. Stratification of ferromanganese crusts on the Magellan seamounts. Proceedings of the 30th International Geological Congress, Vol. 13: 111–128.Google Scholar
  231. Puteanus, D., and Halbach, P., 1988. Correlation of Co concentration and growth rate-a model for age determination of ferromanganese crusts. Chemical Geology, 69: 71–85.Google Scholar
  232. Raab, W.J. and Meylan, M.A., 1977. Morphology. In: Glasby, G.P. (ed.), Marine manganese deposits. Elsevier, Amsterdam, pp. 109–146.Google Scholar
  233. Rehkämper, M., Frank, M., Hein, J.R. and Halliday, A.N., 2004. Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and palagic sediments. Earth and Planetary Science Letters, 219: 77–91.Google Scholar
  234. Reid, J.L. and Lonsdale, P.F., 1974. On the flow of water through the Samoan Passage. Journal of Physical Oceanography, 4: 58–73.Google Scholar
  235. Reyss, J.L., Lemaitre, N., Ku, T.L., Marchig, V., Southon, J.R., Nelson, D.E. and Vogel, J.S., 1985. Growth of manganese nodule from the Peru Basin: A radiochemical anomaly. Geochimica et Cosmochimica Acta, 49: 2401–2408.Google Scholar
  236. Roemmich, D., Huatala, S. and Rudnick, D.L., 1996. Northward abyssal transport through the Samoan Passage and adjacent regions. Journal of Geophysical Research, 101: 14,039–14,055.Google Scholar
  237. Roy, S., 1981. Manganese deposits. Academic Press, London, 458 pp.Google Scholar
  238. Rudnick, D.L., 1997. Direct velocity measurements in the Samoan Passage. Journal of Geophysical Research, 102: 3293–3303.Google Scholar
  239. Sanderson, B., 1985. How bioturbation supports manganese nodules at the sediment-water interface. Deep-Sea Research, 32A: 1281–1285.Google Scholar
  240. Sawlan, J.J. and Murray, J.W., 1983. Trace metal remobilization in the interstitial waters of red clay and hemipelagic marine sediments. Earth and Planetary Science Letters, 64: 213–230.Google Scholar
  241. Schlosser, P., Bullister, J.L., Fine, R., Jenkins, W.J., Key, R., Roether, W. and Smethie, W.M., 2001. Transformation and age of water masses. In: Siedler, G., Church, J. and Gould, J.J. (eds), Ocean circulation & climate observation and modeling of the global ocean. Academic Press, San Diego, pp. 431–452 + Plate 5.8.17 (P. 428)Google Scholar
  242. Schmitz, W., Mangini, A., Stoffers, P., Glasby, G.P. and Plüger, W.L., 1986. Sediment accumulation rates in the southwestern Pacific Basin and Aitutaki Passage. Marine Geology, 73: 181–190.Google Scholar
  243. Schmitz, W.J., 1995. On the interbasin-scale thermohaline circulation. Reviews of Geophysics, 33: 151–173.Google Scholar
  244. Scholten, J.C., Scott, S.D., Garbe-Schönberg, D., Fietze, J., Blanz, T and Kennedy, C.B., 2004. Hydrothermal manganese crusts from the Pitcairn region. In: Hekinian, R., Stoffers, P. and Cheminée, J.-L., (eds), Oceanic hotspots intraplate submarine magmatism and tectonism. Springer-Verlag, Berlin, pp.375–405.Google Scholar
  245. Segl, M., Mangini, A., Bonani, G., Hofmann, H.J., Nessi, M., Suter, M., Wölfli, W., Friedrich, G., Plüger, W.L., Wiechowski, A. and Beer, J., 1984. 10Be-dating of a manganese crust from the central North Pacific Ocean and implications for ocean palaeocirculation. Nature, 309: 540–543.Google Scholar
  246. Segl, M., Mangini, A., Beer, J., Bonani, G., Suter, M. and Wölfli, W., 1989. Growth rate variations of manganese nodules and crusts induced by paleoceanographic events. Paleoceanography, 4: 511–530.Google Scholar
  247. Shaw, T.J., Gieskes, J.M. and Jahnke, R.A., 1990. Early diagenesis in differing depositional environments: The response of transition metals in pore waters. Geochimica et Cosmochimica Acta, 54: 1233–1246.Google Scholar
  248. Shevenell, A.E., Kennett, J.P. and Lea, D.W., 2004. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science, 305: 1766–1770.Google Scholar
  249. Shilov, V.V., 2004. Stratigraphy of Upper Cenozoic deposits in the Clarion-Clipperton Fracture Zone (Pacific Ocean). Unpublished Candidate thesis, VSEGEI (All-Russian Institute of Geology), St. Petersburg. 158 pp. (In Russian)Google Scholar
  250. Silvester, E., Manceau, A., Drits, V.A., 1997. Structure of synthetic monoclinic Na-rich birnessite: II. Results from chemical studies and EXAFS spectroscopy. American Mineralogist, 82: 962–978.Google Scholar
  251. Skornyakova, N.S. and Murdmaa, I.O., 1992. Local variation in distribution and composition of ferromanganese nodules in the Clarion — Clipperton Nodule Province. Marine Geology, 103: 381–405.Google Scholar
  252. Sorem, R.K. and Fewkes, R.H., 1979. Manganese nodule research data and methods of investigation. IFI/Plenum Press, NY, 723 pp.Google Scholar
  253. Stoffers, P., Glasby, G.P., Thijssen, T., Shrivastava, P.C. and Melguen, M., 1981. The geochemistry of co — existing manganese nodules, micronodules, sediments and pore waters from five areas in the equatorial and South — West Pacific. Chemie der Erde, 40: 273–297.Google Scholar
  254. Stoffers, P., Glasby, G.P. and Frenzel, G., 1984. Comparison of the characteristics of manganese micronodules from the equatorial and south — west Pacific. TMPM Tschermaks Mineralogische und Petrographische Mitteilungen, 33: 1–23.Google Scholar
  255. Stoffers, P., Schmitz, W., Glasby, G.P., Plüger, W.L. and Walter, P., 1985. Mineralogy and geochemistry of sediments in the Southwestern Pacific Basin: Tahiti — East Pacific Rise — New Zealand. New Zealand Journal of Geology and Geophysics, 28: 513–530.Google Scholar
  256. Stüben, D., Glasby, G.P., Eckhardt, J.-D., Berner, Z., Mountain, B.W. and Usui, A., 1999. Enrichments of platinum-group elements in hydrogenous, diagenetic and hydrothermal marine manganese and iron deposits. Exploration and Mining Geology, 8: 233–250.Google Scholar
  257. Sverjensky, D.A. 1984. Equilibrium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67: 70–78.Google Scholar
  258. Szefer, P., Glasby, G.P., Kunzendorf, H., Görlich, E.A., Latka, K., Ikuta, K., and Ali, A.A., 1998. Distribution of rare earth and other elements, and the mineralogy of the iron oxyhydroxide phase in marine ferromanganese concretions from within Slupsk Furrow southern Baltic Sea, off Poland. Applied Geochemistry, 13: 305–312.Google Scholar
  259. Taft, B.A., Hayes, S.P., Friederich, G.E, Codispoti, A, 1991. Flow of abyssal water into the Samoan Passage. Deep-Sea Research, 38,Supplement 1: S103–S128.Google Scholar
  260. Tebo, B.M., Ghiorse, W.C., van Waasbergen, L.G., Siering, P.L. and Caspi, R., 1997. Bacterially-mediated mineral formation: Insights into manganese (II) oxidation from molecular genetic and biochemical studies. Reviews in Mineralogy, 35: 225–266.Google Scholar
  261. Tebo, B.M., Bargar, J.R., Clement, B.G., Dick, G.J., Murray, K.J., Parker, D., Verity, R. and Webb, S.M., 2004. Biogenic manganese oxides: Properties and mechanisms of formation. Annual Review of Earth and Panetary Sciences, 32: 287–328.Google Scholar
  262. Teleki, P.G., Dopson, M.R., Moore, J.R. and von Stackelberg, U. (eds), 1987. Marine minerals Advances in research and resource assessment. D. Reidel, Dordrecht, 588 pp.Google Scholar
  263. Thamdrup, B. and Canfield, D.E., 1996. Pathways of carbon oxidation in continental margin sediments off central Chile. Limnology and Oceanography, 41: 1629–1650.Google Scholar
  264. Thiel, H. (ed.), 2001. Environmental impact studies for the mining of polymetallic nodules from the deep sea. Deep-Sea Research II, 48: 3427–3882.Google Scholar
  265. Thijssen, T., Glasby, G.P., Friedrich, G., Stoffers, P. and Sioulas, A., 1985. Manganese nodules in the central Peru Basin. Chemie der Erde, 44: 1–46.Google Scholar
  266. Thomson, J., Higgs, N.C., Hydes, D.J., Wilson, T.R.S. and Sorensen, J., 1987. Geochemical oxidation fronts in NE Atlantic distal turbidites and their effects in the sedimentary record. In: Weaver, P.P.E. and Thompson, J. (eds), Geology and geochemistry of abyssal plains. Geological Society Special Publication, 31: 167–177.Google Scholar
  267. Turekian, K.K. and Bacon, M.P., 2004. Geochronometry of marine deposits. In: Elderfield, H. (ed.), Treatise on geochemistry vol. 6 The oceans and marine geochemistry. Elsevier, Amsterdam, pp. 321–341Google Scholar
  268. Turner, S. and Buseck, P.R., 1981. Todorokites: A new family of naturally occuring manganese oxides. Science, 212: 1024–1027.Google Scholar
  269. Usui, A., 1979. Nickel and copper accumulation as essential elements in 10Å manganite of deep-sea manganese nodules. Nature, 279: 411–413.Google Scholar
  270. Usui, A., 1992. Hydrothermal manganese minerals in Leg 126 cores. Proceedings of Ocean Drilling Program Scentific Results, Volume 126: 113–123.Google Scholar
  271. Usui, A. and Nishimura, A., 1992. Submersible observations of hydrothermal manganese deposits on the Kaikata Seamount, Izu-Ogasawara (Bonin) Arc. Marine Geology, 106: 203–216Google Scholar
  272. Usui, A. and Ito, T., 1994. Fossil manganese deposits buried within DSDP/ODP cores, Leg 1–126. Marine Geology, 119: 111–136.Google Scholar
  273. Usui, A. and Mita, N., 1995. Geochemistry and mineralogy of a modern buserite deposit from a hot spring in Hokkaido, Japan. Clays and Clay Minerals, 43: 116–127.Google Scholar
  274. Usui, A. and Terashima, S., 1997. Deposition of hydrogenetic and hydrothermal manganese minerals in the Ogasawara (Bonin) arc area, northwest Pacific. Marine Georecources and Geotechnology, 15: 127–154.Google Scholar
  275. Usui, A. and Glasby, G.P., 1998. Submarine hydrothermal manganese deposits in the Izu-Bonin-Mariana arc: An overview. The Island Arc, 7: 422–431.Google Scholar
  276. Usui, A., Yuasa, M., Yokota, S., Nohara, M. and Nishimura, A., 1986. Submarine hydrothermal manganese deposits from the Ogasawara (Bonin) Arc, off the Japanese islands. Marine Geology, 73: 311–322.Google Scholar
  277. Usui, A., Mellin, T.A., Nohara, M. and Yuasa, M., 1989. Structural stability of marine 10 Å manganates from the Ogasawara (Bonin) Arc: Implications for low-temperature hydrothermal activity. Marine Geology, 86: 41–56.Google Scholar
  278. Usui, A., Nishimura, A. and Mita, N., 1993. Composition and growth history of surficial and buried manganese nodules in the Penrhyn Basin, Southwest Pacific. MarineGeology, 114: 133–153.Google Scholar
  279. Usui, A., Bau, M. and Yamazaki, T., 1997. Manganese microchimneys buried in Central Pacific Pacific pelagic sediments: evidence of intraplate water circulation. Marine Geology, 141: 269–285.Google Scholar
  280. van Andel, Tj.H., Heath, G.R. and Moore, T.C., 1975. Cenozoic history and paleoceanography of the central equatorial Pacific Ocean. Geological Society of America Memoir, 143: 134 pp.Google Scholar
  281. van de Fliert, T., Frank, M., Halliday, A.N., Hein, J.R., Hattendorf, B., Günther, D. and Kubik, P.W., 2003. Lead isotopes in North Pacific deep — water implications for past changes in input sources and circulation patterns. Earth and Planetary Science Letters, 209: 149–164.Google Scholar
  282. van de Fliert, T., Frank, M., Halliday, A.N., Hattendorf, B., Günther, D. and Kubik, P.W., 2004a. Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget—a combined Pb-Hf-Nd approach. Earth and Planetary Science Letters, 222: 259–273.Google Scholar
  283. van de Fliert, T., Frank, M., Halliday, A.N., Hein, J.R., Hattendorf, B., Günther, D. and Kubik, P.W., 2004b. Deep and bottom water export from the Southern Ocean to the Pacific over the past 38 million years. Paleoceanograpy, 19: PA1020Google Scholar
  284. van de Fliert, T., Frank, M., Lee, D.-C., Halliday, A.N., Reynolds, B.C. and Hein, J.R., 2004c. New constraints on the sources and behavior of neodymium and hafnium in seawater from Pacifc Ocean ferromanganese crusts. Geochimica et Cosmochimica Acta, 68: 3827–3843.Google Scholar
  285. Varentsov, I.M. and Grasselly, Gy. (eds), 1980. Geology and geochemistry of manganese. Hungarian Academy of Sciences, Budapest, 3 volumes.Google Scholar
  286. Varentsov, I.M., Drits, V.A., Gorshkov, A.I., Sivtsov, A.V. and Sakharov, B.A., 1991a. Mn-Fe oxyhydroxide crusts from Krylov Seamount (Eastern Atlantic): Mineralogy, geochemistry and genesis. Marine Geology, 96: 53–70.Google Scholar
  287. Varentsov, I.M., Drits, V.A. and Gorshkov, A.I., 1991b. Rare earth element indicators of Mn-Fe oxyhydroxide crust formation on Krylov Seamount, Eastern Atlantic. Marine Geology, 96: 71–84.Google Scholar
  288. von Blanckenburg, F. O’Nions, R.K. and Hein, J.R., 1996a. Distribution and source of pre-anthropogenic lead isotopes in deep ocean water from Mn-Fe crusts. Geochimica et Cosmochimica Acta, 60: 4957–4963.Google Scholar
  289. von Blanckenburg, F., O’Nions, R.K., Belshaw, N.S., Gibb, A. and Hein, J.R., 1996b. Global distribution of beryllium isotopes in deep ocean water as derived from Fe-Mn crusts. Earth and Planetary Science Letters, 141: 213–226.Google Scholar
  290. von der Haar, D.L., Mahoney, J.J. and McMurtry, G.M., 1995. An evaluation of strontium isotopic dating of ferromanganese oxides in a marine hydrogenous crust. Geochimica et Cosmochimica Acta, 59: 4267–4277.Google Scholar
  291. von Langen, P., Johnson, K.S., Coale, K.H. and Elrod, V.A., 1997. Oxidation kinetics of manganese (II) in seawater in nanomolar concentrations. Geochimica et Cosmochimica Acta, 61: 4945–4954.Google Scholar
  292. von Stackelberg, U., 1997. Growth history of manganese nodules and crusts of the Peru Basin. In: Nicholson, K., Hein, J.R., Bühn, B. and Dasgupta S. (eds), Manganese mineralization: Geochemistry and mineralogy of terrestrial and marine deposits. Geological Society Special Publication, 119: 153–176.Google Scholar
  293. von Stackelberg, U., 2000. Manganese nodules of the Peru Basin. In: Cronan, D.S. (ed.), Handbook of marine minerals. CRC Press, Boca Raton, Florida, pp. 197–238.Google Scholar
  294. von Stackelberg, U., Kunzendorf, H., Marchig, V. and Gwozdz, R., 1984. Growth history of a large manganese crust from the Equatorial North Pacific Nodule Belt. Geologishes Jahrbuch, 75A: 213–235.Google Scholar
  295. von Stackelberg, U. and Marchig, V., 1987. Manganese nodules from the equatorial North Pacific Ocean. Geologishes Jahrbuch, 87D: 123–227.Google Scholar
  296. von Stackelberg, U. and Beiersdorf, H., 1991. The formation of manganese nodules between the Clarion and Clipperton fracture zones southeast of Hawaii. Marine Geology, 98: 411–423.Google Scholar
  297. Wallace, H.E., Thomson, J., Wilson, T.R.S., Weaver, P.P.E., Higgs, N.C., Hydes, D.J., 1988. Active diagenetic formation of metal-rich layers in N.E. Atlantic sediments. Geochimica et Cosmochimica Acta, 52: 1557–1569.Google Scholar
  298. Wallner, C., Faestermann, T., Gerstmann, U., Knie, K., Korschinek, G., Lierse, C. and Rugel, G., 2003. Supernova produced and anthropogenic 244Pu in deep sea manganese encrustations. New Astronomy Reviews, 48: 145–150.Google Scholar
  299. Waychunas, G.A., 1991. Crystal chemistry of oxides and oxyhydroxides. Reviews in Mineralogy, 25: 11–68.Google Scholar
  300. Wiltshire, J.C., 2000. Innovations in marine ferromanganese oxide tailings disposal. In: Cronan, D.S. (ed.), Handbook of marine minerals. CRC Press, Boca Raton, Florida, pp. 281–305.Google Scholar
  301. Wiltshire, J.C., Wen, X.Y and Yao, D., 1999. Ferromanganese crusts near Johnson Island: Geochemistry, stratigraphy and economic potential. Marine Georesources and Geotechnology, 17: 257–270.Google Scholar
  302. Xu, D., 1997. Paleo-ocean events and mineralization in the Pacific. Proceedings of the 30th International Geological Congress, Vol. 13: 129–144.Google Scholar
  303. Yeats, P.A. and Strain, P.M., 1990. The oxidation rate of manganese in seawater: Rate constants based on field data. Estuarine Coastal and Shelf Science, 31: 11–24.Google Scholar
  304. Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Geoffrey P. Glasby
    • 1
  1. 1.Fachbereich GeowissenschaftenUniversität BremenBremenGermany

Personalised recommendations