Advertisement

Restoration of the Sphere-Cortex Homeomorphism

  • Andreas Mang
  • Michael Wagner
  • Jan Müller
  • Manfred Fuchs
  • Thorsten M. Buzug
Part of the Informatik aktuell book series (INFORMAT)

Abstract

The proposed algorithm has been developed as a pre-processing tool for inflating cortical surface meshes, which have been created using segmentation and subsequent triangulation of magnetic resonance images (MRI) [1]. It works directly on the triangulated surface and is therefore completely independent from the underlying segmentation. It needs no other information than the triangle mesh itself, which makes it generally applicable for the removal of topological noise. The homeomorphism between cortical surface and sphere is re-established by removing handles and opening connections. Moreover, the presented approach guarantees a manifold mesh by locally examining connectivity in the neighbourhood of each vertex and removing non-manifold components. It will be embedded into the source reconstruction software package CURRY (Compumedics Neuroscan, El Paso, TX, USA).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wagner M. Rekonstruktion neuronaler Ströme aus bioelektrischen und biomagnetischen Messungen auf der aus MR-Bildern segmentierten Hirnrinde. Ph.D. thesis. TU Hamburg Harburg; 1998.Google Scholar
  2. 2.
    Fischl B, Sereno MI, Dale MA. Cortical Surface-Based Analysis I and II. NeuroImage 1999;9:179–207.CrossRefGoogle Scholar
  3. 3.
    Evens L, Thompson R. Algebraic Topology; 2002. Northwestern University of New York.Google Scholar
  4. 4.
    Han X, Xu C, Prince JL. A Topology Preserving Level Set Method for Geometric Deformable Models. IEEE Trans Pattern Anal 2003;25:755–768.CrossRefGoogle Scholar
  5. 5.
    Shattuck DW, Leahy RM. Automated Graph-Based Analysis and Correction of Cortical Volume Topology. IEEE Trans Med Imaging 2001;11:1167–1177.CrossRefGoogle Scholar
  6. 6.
    Ségonne F, Grimson E, Fischl B. Topological Correction of Subcortical Segmentation. In: LNCS 2879; 2003. p. 695–702.Google Scholar
  7. 7.
    Ségonne F, Grimson E, Fischl B. A Genetic Algorithm for the Topology Correction of Cortical Surfaces. In: Christensen GE, Sonka M, editors. LNCS 3565; 2005. p. 393–405.Google Scholar
  8. 8.
    Guskov I, Wood ZJ. Topological Noise Removal. In: Watson B, Buchanan JW, editors. Proceedings of Graphic Interface 2001; 2001. p. 19–26.Google Scholar
  9. 9.
    Wood ZJ. Computational Topology Algorithms for Discrete 2-Manifolds. Ph. D. dissertation. California Institute of Technology; 2003.Google Scholar
  10. 10.
    Gumhold S. Mesh Compression. Ph. D. dissertation. Fakultät für Informatik Eberhard-Karls-Universität zu Tübingen; 2000.Google Scholar
  11. 11.
    MacLaurin C, Robertson G. Euler Characteristic in Odd Dimensions. Australian Mathematical Society Gazette 2003;30:195–199.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andreas Mang
    • 1
  • Michael Wagner
    • 2
  • Jan Müller
    • 1
  • Manfred Fuchs
    • 2
  • Thorsten M. Buzug
    • 1
  1. 1.Department of Mathematics and TechnologyRheinAhrCampus RemagenRemagenGermany
  2. 2.Compumedics NeuroscanHamburgGermany

Personalised recommendations