Agent Based Approaches to Income Distributions and the Impact of Memory

  • Przemysław Repetowicz
  • Peter Richmond
  • Stefan Hutzler
  • Eimear Ni Dhuinn

Summary

Agent based models have been used to study the dynamics of wealth or income distributions in populations. In this chapter we develop a generic theory of interacting agents where the property of memory may be included. The model may be analysed both analytically and numerically via computer simulation. Particular regimes are analysed and compared with empirical data for both the UK and the Republic of Ireland. We also demonstrate that with the inclusion of memory the predicted wealth distribution can exhibit Pareto tails with values of the exponent that are greater than unity unlike the model without memory where the exponent is always unity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Quetelet, Pierre-François Verhulst, Annuaire de l’Académie royale des sciences de Belgique 16, 97 (1850)Google Scholar
  2. 2.
    P.-F. Verhulst: A note on the law of population growth, 1835. In: D. Smith, N. Keyfitz, Mathematical Demography. Selected Papers (Springer Verlag, 1977); P.-F. Verhulst: Mem. Acad. R. Belg. 18, 1 (1845)Google Scholar
  3. 3.
    T. Malthus: An Essay on the Principle of Population, as it Affects the Future Improvement of Society with Remarks on the Speculations of Mr. Godwin, M. Condorcet, and Other Writers, LONDON, PRINTED FOR J. JOHNSON, IN ST. PAUL’S CHURCH-YARD, 1798, WWW:http://www.ac.wwu.edu/~stephan/malthus/malthus.0.htmlGoogle Scholar
  4. 4.
    V. Pareto: Cours d’Economie Politique (F Rouge, Lausanne 1897)Google Scholar
  5. 5.
    M. Levy, S. Solomon: Physica A 242, 90 (1997)CrossRefADSGoogle Scholar
  6. 6.
    A. Dragulescu, V.M. Yakovenko: Physica A 299, n 1–2, 213 (2001); A. Dragulescu, V.M. Yakovenko: Eur. Phys. J. B 20, 585 (2001)ADSMATHCrossRefGoogle Scholar
  7. 7.
    W.J. Reed, B.D. Hughes: Phys. Rev. E 66, 067103 (2002)CrossRefADSGoogle Scholar
  8. 8.
    H. Aoyama, W. Souma, Y. Fujiwara: Physica A 324, 352 (2003)CrossRefADSMathSciNetMATHGoogle Scholar
  9. 9.
    A. Chatterjee, B.K. Chakrabarti, S.S. Manna: Phys. Scripta T 106, 36 (2003); preprint cond-mat/0311227; A. Chatterjee, B.K. Chakrabarti, S.S. Manna: Physica A 335, 155 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    M. Patriarca, A. Chakraborti, K. Kaski: Phys. Rev. E 70, 016104 (2004)CrossRefADSGoogle Scholar
  11. 11.
    June-Yule Lee, Signal processing of chaotic impacting series, IEE Colloquium on Signals Systems and Chaos, p 7/1–6 (1997)Google Scholar
  12. 12.
    R. Gibrat: Les Inégalités économiques (Librairie du Recueil Sirey, Paris 1931)MATHGoogle Scholar
  13. 13.
    G.K. Zipf: Human Behavior and the Principle of Least Effort (Addison-Wesley, 1949)Google Scholar
  14. 14.
    Y. Ijiri, H. Simon: Skew Distributions and the Sizes of Business Firms (North-Holland, New York 1977)MATHGoogle Scholar
  15. 15.
    H. Kesten: Random Difference Equations and Renewal Theory for Products of Random Matrices, Acta Mathematica, CXXXI: 207–248, 1973MathSciNetCrossRefGoogle Scholar
  16. 16.
    P. Repetowicz, S. Hutzler, P. Richmond: preprint cond-mat/0407770, submitted to Physica AGoogle Scholar
  17. 17.
    A. Chatterjee, B.K. Chakrabarti: Physica Scripta T 106, 36 (2003) and condmat/0311227; A. Chatterjee, B.K. Chakrabarti, S.S. Manna: Physica A 335, 155 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    T. Cranshaw: poster presentation at EPS meeting Applications of Physics in Financial Analysis (APFA) 3, London December (2003)Google Scholar
  19. 19.
    T._Di Matteo, T. Aste, S.T. Hyde: preprint cond-mat/0310544Google Scholar
  20. 20.
    S. Solomon et al: Phys. Rev. E 66031102 (2002); S. Solomon, P. Richmond: Eur. Phys. J. B 27, 257 (2002); P. Richmond, S. Solomon: Int. J. Mod. Phys. C 12, 333 (2001)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    F. Slanina: Phys. Rev. E 69, 46102 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    D. Ben-Avraham, E. Ben-Naim, K. Lindenberg, A. Rosas: preprint condmat/0308175Google Scholar
  23. 23.
    E. Ben-Naim, P.L. Krapivsky: Phys. Rev. E 61, R5 (2000)CrossRefADSGoogle Scholar
  24. 24.
    P.L. Krapivsky, E. Ben-Naim: J. Phys. A: Math. Gen 35, L147 (2002)CrossRefADSMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Przemysław Repetowicz
    • 1
  • Peter Richmond
    • 1
  • Stefan Hutzler
    • 1
  • Eimear Ni Dhuinn
    • 1
  1. 1.Department of PhysicsTrinity College Dublin 2Dublin

Personalised recommendations