Logistic Function in Large Financial Crashes

  • G. Rotundo
Part of the Understanding Complex Systems book series (UCS)

Summary

This chapter examines the signatures that arise after large financial crashes in order to evidence the presence of logistic growth in indices of markets that validates the hypothesis of symmetry on the trend before and after the crash. It is also shown how the probability meaning of the logistic function can be exploited in order to set up a bayesian analysis model. The large crash in the NASDAQ 100 composite index which occurred in April 2000 is presented as a case study.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.M. Bishop: Neural Networks for pattern Recognition (Oxford University Press, Oxford 1996)MATHGoogle Scholar
  2. 2.
    B. Delmas: Mathématiques et Sciences humaines 167, 27 (2004)Google Scholar
  3. 3.
    M.N. Gibbs, D.J.C. MacKay: IEEE-NN 11, 1458 (2000)Google Scholar
  4. 4.
    Y. Huang, A. Johansen, M.W. Lee, H. Saleur, D. Sornette: J. Geophys. Res. 105, 25451 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Huang, H. Saleur, C.G. Sammis, D. Sornette: Europhys. Lett. 41, 43 (1998)CrossRefADSGoogle Scholar
  6. 6.
    T.S. Jaakkola, M.I. Jordan: Computing upper and lower bounds on likelihoods in intractable networks. In: Uncertainty in Artificial Intelligence (UAI) Proceedings of the Twelfth Conference, ed by E. Horvitz (1996) pp 340–348Google Scholar
  7. 7.
    A. Johansen, O. Ledoit, D. Sornette: Int. J. Theo. Appl. Finance 3, 219 (2000)MATHGoogle Scholar
  8. 8.
    A. Johansen, D. Sornette: Physica A 245, 411 (1997)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Johansen, D. Sornette: Physica A 261, 581 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Johansen, D. Sornette: Int. J. Mod. Phys. C 10, 563 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    A. Johansen, D. Sornette: Eur. Phys. J. B 17, 319 (2000)CrossRefADSGoogle Scholar
  12. 12.
    A. Johansen, D. Sornette: Int. J. Theo. Appl. Finance 4, 853 (2001)MATHCrossRefGoogle Scholar
  13. 13.
    A. Johansen, D. Sornette: Endogenous versus Exogenous Crashes in Financial Markets. In press in Contemporary Issues in International Finance (2004)Google Scholar
  14. 14.
    A. Johansen, D. Sornette: Risk 12, 91 (1999)Google Scholar
  15. 15.
    A. Johansen, D. Sornette, O. Ledoit: Risk 1, 5 (1999)Google Scholar
  16. 16.
    G. Rotundo: Physica A 344, 77 (2004)CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    L.K. Saul, M.I. Jordan: Exploiting tractable substructures in intractable networks. In: Advances in Neural Information Processing Systems (NIPS), vol 8, ed by D. Touretzky, M. Mozer, and M. Hasselmo (MIT Press, Cambridge 1996)Google Scholar
  18. 18.
    D. Sornette: Phys. Rep. 378, 1 (2003)CrossRefADSMATHMathSciNetGoogle Scholar
  19. 19.
    D. Sornette, A. Johansen: Qu. Fin. 1, 452 (2001)CrossRefGoogle Scholar
  20. 20.
    D. Sornette, A. Johansen, J.-P. Bouchaud: J. Phys. I France 6, 167 (1996)CrossRefGoogle Scholar
  21. 21.
    D. Sornette, W.-X. Zhou: Qu. Fin. 2, 468 (2002)Google Scholar
  22. 22.
    D. Sornette, W.-X. Zhou: Qu. Fin. 3, C39 (2003)CrossRefGoogle Scholar
  23. 23.
    T. Utsu, Y. Ogata, R. Matsu’ura: J. Phys. Earth 43, 1 (1995)Google Scholar
  24. 24.
    N. Vandewalle, M. Ausloos, Ph. Boveroux, A. Minguet: Eur. Phys. J. B 9, 355 (1999)CrossRefADSGoogle Scholar
  25. 25.
    N. Vandewalle, M. Ausloos: Eur. Phys. J. B 4, 257 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    N. Vandewalle, Ph. Boveroux, A. Minguet, M. Ausloos: Physica A 255, 201 (1998)CrossRefGoogle Scholar
  27. 27.
    W.-X. Zhou, D. Sornette: Physica A 329, 249 (2003)ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • G. Rotundo
    • 1
  1. 1.Department of Business, Technological and Quantitative Studies, Faculty of EconomicsUniversity of TusciaViterboItaly

Personalised recommendations