Advertisement

An Overview of Soft Computing Techniques Used in the Drug Discovery Process

  • Abiola Oduguwa
  • Ashutosh Tiwari
  • Rajkumar Roy
  • Conrad Bessant
Part of the Advances in Soft Computing book series (AINSC, volume 34)

Abstract

Drug discovery (DD) research has evolved to the point of critical dependence on computerized systems, databases and newer disciplines. Such disciplines include but are not limited to bioinformatics, chemoinformatics and soft computing. Their applications range from sequence analysis methods for finding biological targets to design of combinatorial libraries in lead compound optimisation. This paper presents a brief overview of classical techniques in DD with their limitations, and outlines current SC based techniques in this area.

Keywords

Genetic Algorithm Drug Discovery Quantitative Structure Activity Relationship Virtual Screening Soft Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aart, E. and V. P. Laarhoven (1987). Simulated Annealing: a Review of Theory and Applications. Amsterdam, Kluwer Academic Publishers.Google Scholar
  2. Agostini, L. and S. Morosetti (2003). “A simple procedure to weight empirical potentials in a fitness function so as to optimise its performance in ab initio protein-folding problem.” Biophysical Chemistry 105: 105–118.CrossRefGoogle Scholar
  3. Bajorath, J. (2001). “Rational drug discovery revisited: interfacing experimental programs with bio- and chemo-informatics.” Drug Discovery Today 6(19): 989–995.CrossRefGoogle Scholar
  4. Bamborough, P. and F. E. Cohen (1996). “Modelling Protein-Ligand complexes.” Current Opinion in Structural Biology 6: 236–241.CrossRefGoogle Scholar
  5. Bleicher, K. H., H. Bohm, et al. (2003). “Hit and Lead Generation: Beyond High-Throughput Screening.” Nature Review Drug Discovery 2(5): 369–378.CrossRefGoogle Scholar
  6. Brown, R. D., G. Jones, et al. (1994). “Matching two-dimensional chemical graphs using genetic algorithms.” Journal of Chemical Information and Computer Sciences 34(1): 63–67.CrossRefGoogle Scholar
  7. Budin, N., S. Ahmed, et al. (2001). “An Evolutionary Approach for Structurebased Design of Natural and Non-natural Peptidic Ligands.” Combinatorial Chemistry and HTS 4: 661–673.Google Scholar
  8. Budin, N., N. Majeux, et al. (2001). “Structure-based Ligand Design by a Build-up Approach and Genetic Algorithm Search in Conformational Space.” Journal of Computational Chemistry(22): 1956–1970.Google Scholar
  9. Castrodale, B. (2002). Leading Genomic Approaches for Breaking Bottlenecks in Drug Discovery and Development. Massachusetts, Cambridge Healthtech Institute: 1–7.Google Scholar
  10. Chanda, S. K. and J. S. Caldwell (2003). “Fulfilling the promise: drug discovery in the post-genomic era.” Drug Discovery Today 8(4): 168–174.CrossRefGoogle Scholar
  11. Chang, B. C. H. and S. K. Halgamuge (2002). “Protein Motif Extraction with Neuro-Fuzzy Optimization.” Bioinformatics 18(8): 1084–1090.CrossRefGoogle Scholar
  12. Clark, D. E., G. Jones, et al. (1994). “Pharmacophoric pattern matching in files of three-dimensional chemical structures: Comparison of conformational-searching algorithms for flexible searching.” Journal of Chemical Information and Computer Sciences 34(1): 197–206.CrossRefGoogle Scholar
  13. Clark, D. E. and S. D. Pickett (2000). “Computational methods for the prediction of ‘drug-likeness’.” Drug Discovery Today 5(2): 49–57.CrossRefGoogle Scholar
  14. Cooper, L. R., D. W. Corne, et al. (2003). “Use of a novel Hill-Climbing genetic algoriothm in protein folding simulations.” Computational Biology and Chemistry 27: 575–580.CrossRefGoogle Scholar
  15. Desjarlais, J. R. and N. D. Clarke (1998). “Computer search algorithms in protein modification and design.” Current opinion in Structural Biology 8: 471–475.CrossRefGoogle Scholar
  16. Deutsch, J. M. (2003). “Evolutionary Algorithms for Finding Optimal Gene Sets in Microaray Prediction.” Bioinformatics 19(1): 45–52.CrossRefGoogle Scholar
  17. FitzGerald, K. (2000). “In vitro display technologies – new tools for drug discovery.” DDT 5(6): 253–258.Google Scholar
  18. Fontain, E. (1992). “Application of genetic algorithms in the field of constitutional similarity.” Journal of Chemical Information and Computer Sciences 32(1): 748–752.CrossRefGoogle Scholar
  19. Glen, R. C. and A. W. R. Payne (1995). “A genetic algorithm for the automated generation of molecules within constraints.” Journal of Computer-Aided Molecular Design. 9(2): 181–202.CrossRefGoogle Scholar
  20. Globus, A. L. J. et al. (1999). “Automatic molecular design using evolutionary techniques.” Nanotechnology 10: 290–299.CrossRefGoogle Scholar
  21. Hanada, K., T. Yokoyama, et al. (2000). Multiple Sequence Alignment by Genetic Algorithm. Genome Informatics. 11: 317–318.Google Scholar
  22. Hillisch, A. and R. Hilgenfield (2003). Modern Methods of Drug Discovery. Springer Verlag.Google Scholar
  23. Horng, J., L. Wu, et al. (2004). “A genetic algorithm for mutiple sequnce alignment.” Soft Computing.Google Scholar
  24. Illgen, K., T. Enderle, et al. (2000). “Simulated molecular evolution in a full combinatorial library.” Chemisry and Biology 7: 433–441.CrossRefGoogle Scholar
  25. Isokawa, M., M. Wayama, et al. (1996). “Multiple Sequence Alignment Using Genetic Algorithm.” Genome Informatics 7: 176–177.Google Scholar
  26. Jagla, B. and J. Schuchhardt (2000). “Adaptive Encoding Neural Networks for the Recognition of Human Signal Peptide Cleavage Sites.” Bioinformatics 16: 245–250.CrossRefGoogle Scholar
  27. Jones, G., P. Willett, et al. (1995). “Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation.” Journal of Molecular biology 245: 43–53.CrossRefGoogle Scholar
  28. Jue, R. A., N. W. Woodbury, et al. (1980). “Sequence homologies among e. coli ribosomal proteins: evidence for evolutionary related groupings and internal duplications.” Journal of Molecular Evolution 15: 129–148.CrossRefGoogle Scholar
  29. Keedwell, E. C. and A. Narayanan (2003). Genetic algorithms for gene expression analysis. Applications of Evolutionary Computation: Proceedings of the 1st European Workshop on Evolutionary Bioinformatics(EvoBIO 2003), Springer Verlag LNCS.Google Scholar
  30. Khan, J., J. S. Wei, et al. (2001). “Classification and diagnostic prediction of cancers using gene expression profilling and artificial neuarl networks.” nature Medicine 7(6): 673–679.CrossRefGoogle Scholar
  31. Knowles, J. and G. Gromo (2002). “Target Selection in Drug Discovery.” Nature Reviews: Drug Discovery 2: 63–69.CrossRefGoogle Scholar
  32. Konig, R. and T. Dandekar (1999). “Improving genetic algorithms for protien folding simulations by systematic crossover.” BioSystems 50: 17–25.CrossRefGoogle Scholar
  33. Langdon, W. B., S. J. Barret, et al., Eds. (2002). Genetic Programming for combining neural networks for drug discovery. Soft Computing and Industrial Application, Springer-Verlag.Google Scholar
  34. Lawrence, C., S. Altschul, et al. (1993). “Detecting subtle sequence signals: a gibbs sampling strategy for multiple alignment.” Science 262: 208–214.Google Scholar
  35. Ma, C. (2004). Animal models of diseases. Mdern Drug Discovery. 3: 30–36.zbMATHGoogle Scholar
  36. Maggio, E. T. and K. Ramnarayan (2001). “Recent developments in computational proteomics.” Drug Discovery Today 6(19): 996–1004.CrossRefGoogle Scholar
  37. Manallack, D. T. and D. J. Livingstone (1999). “Neural networks in drug discovery: have they lived up to their promise?” Europen Jopurnal of Medicinal Chemistry 34: 195–208.CrossRefGoogle Scholar
  38. Marton, M. J., J. L. DeRisi, et al. (1998). “Drug target validation and identification of secondary drug target effects using DNA microarrays.” Nature Medicine 4(11): 1293–1301.CrossRefGoogle Scholar
  39. Needleman, S. B. and C. D. Wunsch (1970). “A general method applicable to the search for similarities in the amino acid sequences of two proteins.” Journal of Molecular Biology 42: 245–261.Google Scholar
  40. Notredame, C. and D. G. Higgins (1996). “SAGA: sequence alignment by genetic algorithm.” Nucleic Acids Research 24(8): 1515–1524.CrossRefGoogle Scholar
  41. Oduguwa, V. (2003). Rolling System Design Optimisation Using Soft Computing Techniuques. Enterprise Integration. Bedfordshire, Cranfield: 332.Google Scholar
  42. Ooi, C. H. and P. Tan (2003). “Genetic Algorithms Applied to Multi-Class prediction for the Analysis of Gene Expression Data.” Bioinformatics 19(1): 37–44.CrossRefGoogle Scholar
  43. Oshiro, C. M., I. D. Kuntz, et al. (1995). “Flexible ligand docking using a genetic algorithm.” Journal of Computer-Aided Molecular Design 9(1): 113–130.CrossRefGoogle Scholar
  44. Parrill, A. (1996). “Evolutionary and genetic methods in drug design.” DDT 1(12): 514–521.Google Scholar
  45. Pedersen, J. T. and J. Moult (1996). “Genetic algorithms for protein structure prediction.” Current Opinion in Structural Biology 6: 227–231.CrossRefGoogle Scholar
  46. Pedersen, J. T. and J. Moult (1997). “Protein Folding simulations with genetic algorithms and a detailed description.” Journal of Molecular Biology 269: 240–259.CrossRefGoogle Scholar
  47. Pegg, S. C. H., J. J. Haresco, et al. (2001). “A Genetic Algorithm for Structurebased De Novo Design.” Journal of Computer-Aided Molecular Design. 15: 911–933.CrossRefGoogle Scholar
  48. Reijmers, T. H., R. Wehrens, et al. (1999). “Quality Criteria of Genetic Algorithm for Construction of Phylogenetic Trees.” Journal of Computational Chemistry 20(8): 867–876.CrossRefGoogle Scholar
  49. Schneider, G., O. Clement-Chomienne, et al. (2000). “Virtual Screening for Bioactive Molecules by Evolutionary De Novo Design.” Angewandte Chemie International Edition in English 39: 4130–4133.CrossRefGoogle Scholar
  50. Schneider, G., M.-L. Lee, et al. (2000). “De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.” Journal Computer-Aided Molecular Design 14: 487–494.CrossRefGoogle Scholar
  51. Searls, D. B. (2000). “Using Bioinformatics in gene and drug discovery.” DDT. 5(4): 135–143.Google Scholar
  52. Stahura, F. L. and J. Bajorath (2002). “Bio- and chemo-informtics beyond data management: crucial challenges and future opportunities.” Drug Discovery Today 7(11): s41–s47.CrossRefGoogle Scholar
  53. Swindells, M. B. and J. P. Overington (2002). “Prioritizing the proteome: identifying pharmaceutically relevant targets.” Drug Discovery Today 7(9): 516–521.CrossRefGoogle Scholar
  54. Theullon-Sayag, V. (2002). Impact of e-Pharma Technology on the Drug Development Process. Enterprise Integration. Cranfield, Cranfield University: 93.Google Scholar
  55. Verkman, A. S. (2004). “Drug Discovery in academia.” American Journal of Physiology – Cell Physiology 286: C465–C474.CrossRefGoogle Scholar
  56. Wang, R., Y. Gao, et al. (2000). “LigBuilder: A Multi-Purpose Program for Structure-based Drug Design.” Journal of Molecular Modeling 6: 498–516.zbMATHCrossRefGoogle Scholar
  57. Weber, L. (1998). “Application of genetic algorithms in molecular diversity.” Currnet Opinion in Chemical Biology 2: 381–385.CrossRefGoogle Scholar
  58. Weber, L. (1998). “Evolutionary combinatorial chemistry: application of genetic algoithms.” Drug discovery Today 3(8): 379–385.CrossRefGoogle Scholar
  59. Weber, L., S. Wallbaum, et al. (1995). “Optimisation of the Biological Activity of Combinatorial Compound Libraries by a Genetic Algorithm.” Angewandte Chemie International Edition in English 34: 2280–2282.CrossRefGoogle Scholar
  60. Wild, D. J. and P. Willett (1996). “Similarity Searching in Files of Three-Dimensional Chemical Structures. Alignment of Molecular Electrostatic Potential Fields with a Genetic Algorithm.” Journal of Chemical Information and Computer Sciences 36(2): 159–167.CrossRefGoogle Scholar
  61. Winkkler, D. A. and F. R. Burden (2004). “Bayesian neural nets for modeling in drug discovery.” DDT: BIOSILICO 2(3): 104–111.CrossRefGoogle Scholar
  62. Yang, J.-M. and C.-C. Chen (2004). “GEMDOCK: A generic evolutionary method for molecular docking.” PROTEINS: Structure. Function, and Bioinformatics 55: 288–304.CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Abiola Oduguwa
    • 1
  • Ashutosh Tiwari
    • 1
  • Rajkumar Roy
    • 1
  • Conrad Bessant
    • 1
  1. 1.Dept. of Enterprise IntegrationCranfield UniversityUK

Personalised recommendations