Overcoming Energetic and Time Scale Barriers Using the Potential Energy Surface

  • David J. Wales
  • Joanne M. Carr
  • Tim James
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 49)

Abstract

Sampling stationary points of the potential energy surface provides an intuitive way to coarse-grain calculations of both thermodynamic and dynamic properties. Functions such as internal energy, entropy, free energy and the heat capacity can be obtained from the superposition approximation, where the total partition function is written as a sum of contributions from a database of local minima. Rates can be calculated if the database is augmented to include transition states that connect the minima, and the discrete path sampling method provides a systematic approach to this problem. Transforming the potential energy surface into the basins of attraction of local minima also provides a powerful global optimisation algorithm via the basin-hopping approach.

Key words

Energy landscapes Discrete path sampling Rare events Global optimisation Basin-hopping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Anderson J.B.: Statistical theories of chemical reactions. Distributions in the transition region. J. Chem. Phys, 58, 4684–4692 (1973)CrossRefGoogle Scholar
  2. [2]
    Åqvist J., Warshel A.: Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches. Chem. Rev., 93, 2523–2544 (1993)CrossRefGoogle Scholar
  3. [3]
    Brooks B.R., Bruccoleri R.E., Olafson B.D., States D.J., Swaminathan S., Karplus M.: CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem., 4, 187–217 (1983)CrossRefGoogle Scholar
  4. [4]
    Bolhuis P.G., Chandler D., Dellago C., Geissler P.L.: Transition path sampling: Throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem., 53, 291–318 (2002)CrossRefGoogle Scholar
  5. [5]
    Bennett C.H.: Molecular dynamics and transition state theory: the simulation of infrequent events. In: Christofferson R.E. (ed) Algorithms for Chemical Computations, 63–97, American Chemical Society, Washington, D.C. (1977)Google Scholar
  6. [6]
    Becker O.M., Karplus M.: The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics. J. Chem. Phys., 106, 1495–1517 (1997)CrossRefGoogle Scholar
  7. [7]
    Bortz A.B., Kalos M.H., Leibowitz J.L.: A new algorithm for Monte Carlo simulation of Ising spin systems. J. Comput. Phys., 17, 10–18 (1975)CrossRefGoogle Scholar
  8. [8]
    Byrd R.H., Lu P., Nocedal J.: A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific and Statistical Computing, 16, 1190–1208 (1995)CrossRefMathSciNetGoogle Scholar
  9. [9]
    Burton J.J.: Vibrational frequencies and entropies of small clusters of atoms. J. Chem. Phys., 56, 3133–3138 (1972)CrossRefGoogle Scholar
  10. [10]
    Cheng L., Cai W., Shao X.: A connectivity table for cluster similarity checking in the evolutionary optimization method. Chem. Phys. Lett., 389, 309–314 (2004)CrossRefGoogle Scholar
  11. [11]
    Coulson C.A., Danielsson U.: Ionic and covalent contributions to the hydrogen bond. Ark. Fys., 8, 239–255 (1954)Google Scholar
  12. [12]
    Calvo F., Doye J.P.K., Wales D.J.: Characterization of anharmonicities on complex potential energy surfaces: Perturbation theory and simulation. J. Chem. Phys., 115, 9627–9636 (2001)CrossRefGoogle Scholar
  13. [13]
    Calvo F., Doye J.P.K., Wales D.J.: Quantum partition functions from classical distributions. Application to rare gas clusters. J. Chem. Phys., 114, 7312–7329 (2001)CrossRefGoogle Scholar
  14. [14]
    Czerminski R., Elber R.: Reaction-path study of conformational transitions in flexible systems—applications to peptides. J. Chem. Phys., 92, 5580–5601 (1990)CrossRefGoogle Scholar
  15. [15]
    Chandler D.: Statistical mechanics of isomerization dynamics in liquids and the transition state approximation. J. Chem. Phys., 68, 2959–2970 (1978)CrossRefGoogle Scholar
  16. [16]
    Christie R.A., Jordan K.D.: Theoretical investigation of the H3O+(H2O)4 cluster. J. Phys. Chem. A, 105, 7551–7558 (2001)CrossRefGoogle Scholar
  17. [17]
    Chekmarev S.F., Krivov S.V.: Confinement of the molecular dynamics trajectory to a specified catchment area on the potential surface. Chem. Phys. Lett., 287, 719–724 (1998)CrossRefGoogle Scholar
  18. [18]
    Calvo F., Spiegelman F., Wales D.J.: Theoretical study of finite-temperature spectroscopy in CaArn clusters. II. time-dependent absorption spectra. J. Chem. Phys., 118, 8754–8762 (2003)CrossRefGoogle Scholar
  19. [19]
    Dellago C., Bolhuis P.G., Chandler D.: On the calculation of reaction rate constants in the transition path ensemble. J. Chem. Phys., 110, 6617–6625 (1999)CrossRefGoogle Scholar
  20. [20]
    Dellago C., Bolhuis P., Geissler P.L.: Transition path sampling. Adv. Chem. Phys., 123, 1–78 (2002)CrossRefGoogle Scholar
  21. [21]
    Deaven D.M., Ho K.M.: Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett., 75, 288–291 (1995)CrossRefGoogle Scholar
  22. [22]
    Dang L.X., Pettitt B.M.: Simple intramolecular model potentials for water. J. Phys. Chem., 91, 3349–3354 (1987)CrossRefGoogle Scholar
  23. [23]
    Doye J.P.K., Wales D.J.: Calculation of thermodynamic properties of small Lennard-Jones clusters incorporating anharmonicity. J. Chem. Phys., 102, 9659–9672 (1995)CrossRefGoogle Scholar
  24. [24]
    Doye J.P.K., Wales D.J.: Thermodynamics of global optimization. Phys. Rev. Lett., 80, 1357–1360 (1998)CrossRefGoogle Scholar
  25. [25]
    Doye J.P.K., Wales D.J.: Saddle points and dynamics of Lennard-Jones clusters, solids, and supercooled liquids. J. Chem. Phys., 116, 3777–3788 (2002)CrossRefGoogle Scholar
  26. [26]
    Elber R., Ghosh A., Cardenas A.: Long time dynamics of complex systems. Accounts Chem. Res., 35, 396–403 (2002)CrossRefGoogle Scholar
  27. [27]
    Eastman P., Grønbech-Jensen N., Doniach S.: Simulation of protein folding by reaction path annealing. J. Chem. Phys., 114, 3823–3841 (2001)CrossRefGoogle Scholar
  28. [28]
    Evans M.G., Polanyi M.: Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc., 31, 875–894 (1935)CrossRefGoogle Scholar
  29. [29]
    Evans M.G., Polanyi M.: On the introduction of thermodynamical variables into reaction kinetics. Trans. Faraday Soc., 33, 448–452 (1937)CrossRefGoogle Scholar
  30. [30]
    Elber R., Meller, J., Olender, R.: Stochastic path approach to compute atomically detailed trajectories: Application to the folding of C peptide. J. Phys. Chem. B, 103, 899–911 (1999)CrossRefGoogle Scholar
  31. [31]
    Elber R., Shalloway D.: Temperature dependent reaction coordinates. J. Chem. Phys., 112, 5539–5545 (2000)CrossRefGoogle Scholar
  32. [32]
    Evans D.A., Wales D.J.: The free energy landscape and dynamics of metenkephalin. J. Chem. Phys., 119, 9947–9955 (2003)CrossRefGoogle Scholar
  33. [33]
    Evans D.A., Wales D.J.: Folding of the GB1 hairpin peptide from discrete path sampling. J. Chem. Phys., 121, 1080–1090 (2004)CrossRefGoogle Scholar
  34. [34]
    Eyring H.: The activated complex and the absolute rate of chemical reactions. Chem. Rev., 17, 65–77 (1935)CrossRefGoogle Scholar
  35. [35]
    Franke G., Hilf E.R., Borrmann P.: The structure of small clusters: Multiple normal-modes model. J. Chem. Phys., 98, 3496–3502 (1993)CrossRefGoogle Scholar
  36. [36]
    Fichthorn K.A., Weinberg W.H.: Theoretical foundations of dynamical Monte Carlo simulations. J. Chem. Phys, 95, 1090–1096 (1991)CrossRefGoogle Scholar
  37. [37]
    Gillespie D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22, 403–434 (1976)CrossRefMathSciNetGoogle Scholar
  38. [38]
    Gillespie D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2361 (1977)CrossRefGoogle Scholar
  39. [39]
    Gilmer G.H.: Computer models of crystal growth. Science, 208, 355–363 (1980)Google Scholar
  40. [40]
    Hoare M.R.: Structure and dynamics of simple microclusters. Adv. Chem. Phys., 40, 49–135 (1979)Google Scholar
  41. [41]
    Huo S., Straub J.E.: The MaxFlux algorithm for calculating variationally optimized reaction paths for conformational transitions in many body systems at finite temperature. J. Chem. Phys., 107, 5000–5006 (1997)CrossRefGoogle Scholar
  42. [42]
    Huo S., Straub J.E.: Direct computation of long time dynamical processes in peptides and proteins: reaction path study of the coil to helix transition in polyalanine. Proteins: Structure, Function, Genetics, 36, 249–261 (1999)CrossRefGoogle Scholar
  43. [43]
    Hodges M.P., Wales D.J.: Global minima of protonated water clusters. Chem. Phys. Lett., 324, 279–288 (2000)CrossRefGoogle Scholar
  44. [44]
    Jorgensen W.L., Chandrasekhar J., Madura J.D.: Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 79, 926–935 (1983)CrossRefGoogle Scholar
  45. [45]
    Jensen F.: Introduction to Computational Chemistry, chapter 7, p. 195. Wiley (1999)Google Scholar
  46. [46]
    Krivov S.V., Chekmarev S.F., Karplus M.: Potential energy surfaces and conformational transitions in biomolecules: A successive confinement approach applied to a solvated tetrapeptide. Phys. Rev. Lett., 88, 038101 (4 pages) (2002)CrossRefGoogle Scholar
  47. [47]
    Kunz R.E.: Dynamics of first-order phase transitions. Deutsch, Thun (1995)Google Scholar
  48. [48]
    Lazaridis T., Karplus M.: Effective energy function for proteins in solution. Proteins: Structure, Function, Genetics, 35, 133–152 (1999)CrossRefGoogle Scholar
  49. [49]
    Li Z., Scheraga H.A.: Monte Carlo-minimisation approach to the multipleminima problem in protein folding. Proc. Natl. Acad. Sci, USA, 84, 6611–6615 (1987)MathSciNetGoogle Scholar
  50. [50]
    McGinty D.J.: Vapor phase homogenous nucleation and the thermodynamic properties of small clusters of argon atoms. J. Chem. Phys., 55, 580–588 (1971)CrossRefGoogle Scholar
  51. [51]
    Mezey P.G.: Catchment region partitioning of energy hypersurfaces, I. Theo. Chim. Acta, 58, 309–330 (1981)Google Scholar
  52. [52]
    Murrell J.N., Laidler K.J.: Symmetries of activated complexes. J. Chem. Soc. Faraday Trans., 64, 371–377 (1968)CrossRefGoogle Scholar
  53. [53]
    Marx D., Tuckerman M.E., Hutter J., Parrinello M.: The nature of the hydrated excess proton in water. Nature, 397, 601–604 (1999)CrossRefGoogle Scholar
  54. [54]
    Mulliken R.S.: The interaction of electron donors and acceptors. J. Chim. Phys., 61, 20–38 (1964)Google Scholar
  55. [55]
    Montalenti F., Voter A.F.: Exploiting past visits or minimum-barrier knowledge to gain further boost in the temperature-accelerated dynamics method. J. Chem. Phys., 116, 4819–4828 (2002)CrossRefGoogle Scholar
  56. [56]
    Munro L.J., Wales D.J.: Defect migration in crystalline silicon. Phys. Rev. B, 59, 3969–3980 (1999)CrossRefGoogle Scholar
  57. [57]
    Niesse J.A., Mayne H.R.: Global optimization of atomic and molecular clusters using the space-fixed modified genetic algorithm method. J. Comp. Chem., 18, 1233–1244 (1997)CrossRefGoogle Scholar
  58. [58]
    Olender R., Elber R.: Calculation of classical trajectories with a very large time step: Formalism and numerical examples. J. Chem. Phys., 105, 9299–9315 (1996)CrossRefGoogle Scholar
  59. [59]
    Passerone D., Parrinello M.: Action-derived molecular dynamics in the study of rare events. Phys. Rev. Lett., 87, 108302 (4 pages) (2001)CrossRefGoogle Scholar
  60. [60]
    Pelzer H., Wigner E.: Über die Geschwindigkeitskonstante von Austauschreaktionen. Z. Phys. Chem., B15, 445–463 (1932)Google Scholar
  61. [61]
    Rahman J.A., Tully J.C.: Puddle-skimming: An efficient sampling of multidimensional configuration space. J. Chem. Phys., 116, 8750–8760 (2002)CrossRefGoogle Scholar
  62. [62]
    Rahman J.A., Tully J.C.: Puddle-jumping: a flexible sampling algorithm for rare event systems. Chem. Phys., 285, 277–287 (2002)CrossRefGoogle Scholar
  63. [63]
    Sevick E.M., Bell A.T., Theodorou D.N.: A chain of states method for investigating infrequent event processes occurring in multistate, multidimensional systems. J. Chem. Phys., 98, 3196–3212 (1993)CrossRefGoogle Scholar
  64. [64]
    Straub J.E., Guevara J., Huo S., Lee J.P.: Long time dynamic simulations: Exploring the folding pathways of an Alzheimer’s amyloid abeta-peptide. Accounts Chem. Res., 35, 473–481 (2002)CrossRefGoogle Scholar
  65. [65]
    Stillinger F.H., Stillinger D.K.: Cluster optimization simplified by interaction modification. J. Chem. Phys., 93, 6106–6107 (1990)CrossRefGoogle Scholar
  66. [66]
    Schmitt U.W., Voth G.A.: The computer simulation of proton transport in water. J. Chem. Phys., 111, 9361–9381 (1999)CrossRefGoogle Scholar
  67. [67]
    Sørensen M.R., Voter A.F.: Temperature-accelerated dynamics for simulation of infrequent events. J. Chem. Phys., 112, 9599–9606 (2000)CrossRefGoogle Scholar
  68. [68]
    Stillinger F.H., Weber T.A.: Hidden structure in liquids. Phys. Rev. A, 25, 978–989 (1982)CrossRefGoogle Scholar
  69. [69]
    Stillinger F.H., Weber T.A.: Packing structures and transitions in liquids and solids. Science, 225, 983–989 (1984)Google Scholar
  70. [70]
    van Kampen N.G.: Stochastic processes in physics and chemistry. North-Holland, Amsterdam (1981)Google Scholar
  71. [71]
    Voter A.F.: Hyperdynamics: accelerated molecular dynamics of infrequent events. Phys. Rev. Lett., 78, 3908–3911 (1997)CrossRefGoogle Scholar
  72. [72]
    Voter A.F.: A method for accelerating the molecular dynamics simulation of infrequent events. J. Chem. Phys., 106, 4665–4677 (1997)CrossRefGoogle Scholar
  73. [73]
    Wales D.J.: Coexistence in small inert-gas clusters. Mol. Phys., 78, 151–171 (1993)CrossRefGoogle Scholar
  74. [74]
    Wales D.J.: Discrete path sampling. Mol. Phys., 100, 3285–3306 (2002)CrossRefGoogle Scholar
  75. [75]
    Wales D.J.: Energy landscapes. Cambridge University Press, Cambridge (2003)Google Scholar
  76. [76]
    Wales D.J.: Some further applications of discrete path sampling to cluster isomerization. Mol. Phys., 102, 891–908 (2004)CrossRefGoogle Scholar
  77. [77]
    Wales D.J., Doye J.P.K.: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A, 101, 5111–5116 (1997)CrossRefGoogle Scholar
  78. [78]
    Wales D.J., Doye J.P.K.: Stationary points and dynamics in high-dimensional systems. J. Chem. Phys., 119, 12409–12416 (2003)CrossRefGoogle Scholar
  79. [79]
    Wales D.J., Doye J.P.K., Miller M.A., Mortenson P.N., Walsh T.R.: Energy landscapes: from clusters to biomolecules. Adv. Chem. Phys., 115, 1–111 (2000)Google Scholar
  80. [80]
    Wales D.J., Hodges M.P.: Global minima of water clusters (H2O)n, n ≤ 21, described by an empirical potential. Chem. Phys. Lett., 286, 65–72 (1998)CrossRefGoogle Scholar
  81. [81]
    Wales D.J., Miller M.A., Walsh T.R.: Archetypal energy landscapes. Nature, 394, 758–760 (1998)CrossRefGoogle Scholar
  82. [82]
    Wales, D.J., Scheraga, H.A.: Global optimization of clusters, crystals and biomolecules. Science, 285, 1368–1372 (1999)CrossRefGoogle Scholar
  83. [83]
    Warshel A., Weiss R.M.: An empirical valence bond approach for comparing reactions in solutions and in enzymes. J. Am. Chem. Soc., 102, 6218–6226 (1980)CrossRefGoogle Scholar
  84. [84]
    Wicke E., Eigen M., Ackermann T.: Über den Zustand des Protons (Hydroniumions) in wäßriger L.sung. Z. Physik. Chem. (N. F.), 1, 340–364 (1954)Google Scholar
  85. [85]
    Wynne-Jones W.F.K., Eyring H.: The absolute rate of reactions in condensed phases. J. Chem. Phys., 3, 492–502 (1935)CrossRefGoogle Scholar
  86. [86]
    Zundel G., Metzger H.: Energiebänder der tunnelnden Überschuß-Protenon in flüssigen Säuren. Eine IR-spektroskopische Untersuchung der Natur der Gruppierungen H5O2+. Z. Physik. Chem. (N. F.), 58, 225–245 (1968)Google Scholar
  87. [87]
    Zhan L., Piwowar B., Liu W.K., Hsu P.J., Lai S.K., Chen J.Z.Y.: Multicanonical basin hopping: A new global optimization method for complex systems. J. Chem. Phys., 120, 5536–5542 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • David J. Wales
    • 1
  • Joanne M. Carr
    • 1
  • Tim James
    • 1
  1. 1.Department of ChemistryCambridgeUK

Personalised recommendations