Advertisement

Adding a Trust Layer to Semantic Web Metadata

  • Paolo Ceravolo
  • Ernesto Damiani
  • Marco Viviani
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 197)

Summary

We outline the architecture of a modular Trust Layer that can be superimposed to generic semantic Web-style metadata generation facilities. Also, we propose an experimental setting to generate and validate trust assertions on classification metadata generated by different tools (including our ClassBuilder) after a process of metadata standardization. Our experimentation is aimed at validating the role of our Trust Layer as a non-intrusive, user-centered quality improver for automatically generated metadata.

Keywords

Resource Description Framework Aggregation Operator Reputation System Weighted Order Weight Average Trust Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aczél, J.: On Weighted synthesis of judgements. Aequationes Math. 27 (1984) 288–307zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Aringhieri, R., Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Fuzzy Techniques for Trust and Reputation Management in Anonymous Peer-to-Peer Systems. Journal of the American Society for Information Science and Technology (JASIST) (to appear) (2006)Google Scholar
  3. 3.
    Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: The role of trust management in distributed systems security. Secure Internet Programming (1999) 79–97Google Scholar
  4. 4.
    Bosc, P., Damiani, E., Fugini, M.: Fuzzy service selection in a distributed object-oriented environment. IEEE Trans. on Fuzzy Systems 9(5) (2001) 682–698CrossRefGoogle Scholar
  5. 5.
    Brill, E., Moore, R. C.: An improved error model for noisy channel spelling correction. Proc. of the 38th Annual Meeting of the ACL (2000) 286–293Google Scholar
  6. 6.
    Ceravolo, P., Nocerino, M. C., Viviani, M.: Knowledge extraction from semi-structured data based on fuzzy techniques. Knowledge-Based and Emergent Technologies Relied Intelligent Information and Engineering Systems KES’04 2 (2004) 1257–1263Google Scholar
  7. 7.
    Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarati, P.: Managing and Sharing Servents’ Reputations in P2P Systems. IEEE Trans. Knowl. Data Eng. 15(4) (2003) 840–854CrossRefGoogle Scholar
  8. 8.
    Damiani, E., Nocerino, M. C., Viviani, M.: Knowledge Extraction from an XML Data Flow: Building a Taxonomy based on Clustering Technique. Current Issues in Data and Knowledge Engineering, Proceedings of EUROFUSE 2004: 8th Meeting of the EURO Working Group on Fuzzy Sets (2004) 133–142Google Scholar
  9. 9.
    Fodor, J., Marichal, J. L., Roubens, M.: Characterization of the Ordered Weighted Averaging Operators. IEEE Trans. on Fuzzy Systems 3(2) (1995) 236–240CrossRefGoogle Scholar
  10. 10.
    Grabisch, M.: Fuzzy integral in multicriteria decision making. Fuzzy Sets and Systems 69 (1995) 279–298zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Jøsang A.: The right type of trust for distributed systems. Proceedings of the 1996 Workshop on New Security Paradigms (1996)Google Scholar
  12. 12.
    Jøsang A., Roslan, I., Boyd, C.: A Survey of Trust and Reputation Systems for Online Service Provision. Decision Support Systems (to appear) (2005)Google Scholar
  13. 13.
    Kamvar, S., Schlosser, M., Garcia-Molina, H.: The EigenTrust Algorithm for Reputation Management in P2P Networks. Proceedings of the Twelfth International World Wide Web Conference (2003)Google Scholar
  14. 14.
    Mesiar, R., Komorníková, M.: Aggregation Operators. Proceedings of the XI Conference on applied Mathematics PRIM’96, Herceg D., Surla K. (eds.), Institute of Mathematics (1997) 193–211Google Scholar
  15. 15.
    Torra, V.: The weighted owa operator. International Journal of Intelligent Systems 12(2) (1997) 153–166zbMATHCrossRefGoogle Scholar
  16. 16.
    Yager, R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transactions on Systems, Man and Cybernetics 18(1) (1988) 183–190zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Xu, Z.S., Da, Q.L.: An Overview of Operators for Aggregating Information. International Journal of Intelligent Systems 18 (2003) 953–969zbMATHCrossRefGoogle Scholar
  18. 18.
    Yager, R.: Quantifier Guided Aggregation Using OWA operators. International Journal of Intelligent Systems 11 (1996) 49–73CrossRefGoogle Scholar
  19. 19.
    http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnuddi/html/impmetadata.aspGoogle Scholar
  20. 20.
    http://www.w3.org/TR/rdf-primer/#reificationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paolo Ceravolo
    • 1
  • Ernesto Damiani
    • 1
  • Marco Viviani
    • 1
  1. 1.Dipartimento di Tecnologie dell’InformazioneUniversità degli Studi di MilanoCrema (CR)Italia

Personalised recommendations