Introducing Molecular Electronics pp 153-184

Part of the Lecture Notes in Physics book series (LNP, volume 680)

Tight-Binding DFT for Molecular Electronics (gDFTB)

  • A. Di Carlo
  • A. Pecchia
  • L. Latessa
  • Th. Frauenheim
  • G. Seifert


We present a detailed description of the implementation of the nonequilibrium Green’s function technique on the density-functional-based tightbinding simulation tool (gDFTB). This approach can be used to compute electronic transport in organic and inorganic molecular-scale devices. The tight-binding formulation gives an efficient computational tool able to handle a large number of atoms. The non-equilibrium Green’s functions are used to compute the electronic density self-consistently with the open-boundary conditions naturally encountered in transport problems and the boundary conditions imposed by the potentials at the contacts. The Hartree potential of the density-functional Hamiltonian is obtained by solving the three-dimensional Poisson’s equation involving the non-equilibrium charge density. This method can treat, within a unified framework, coherent and incoherent transport mechanisms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Joachim, J.K. Gimzewski, R.R. Schittler, C. Chavy: Electronic transparence of a single C60 molecule, Phys. Rev. Lett. 74, 2102 (1995)CrossRefADSGoogle Scholar
  2. 2.
    R.M. Metzger, B. Chen, U. Hopfner, M.V. Lakshmikantham, D. Vuillaume, T. Kawai, X.L. Wu, H. Tachibana, T.V. Hughes, H. Sakurai, J.W. Baldwin, C. Hosch, M.P. Cava, L. Brehmer, C.J. Ashwell: Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide, J. Am. Chem. Soc. 119, 10–455 (1997)CrossRefGoogle Scholar
  3. 3.
    C. Zhou, M.R. Deshpande, M.A. Reed, L. Jones, J.M. Tour: Conductance of a molecular junction, Appl. Phys. Lett. 71, 611 (1997)CrossRefADSGoogle Scholar
  4. 4.
    W. Tian, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak: Conductance spectra of molecular wires, J. Chem. Phys. 109, 2874 (1998)CrossRefADSGoogle Scholar
  5. 5.
    C.P. Collier, E.W. Wong, M. Belohradský, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath: Electronically configurable molecular-based logic gates, Science 285, 391 (1999)CrossRefGoogle Scholar
  6. 6.
    B. Xu, N.J. Tao: Measurement of single-molecule resistance by repeated formation of molecular junctions, Science 301, 1221 (2003)CrossRefADSGoogle Scholar
  7. 7.
    J.F. Stoddart, J.R. Heath, R.S. Williams: More on molecular electronics, Science 303, 1136 (2004)Google Scholar
  8. 8.
    A. Nitzan, M.A. Ratner: Electron transport in molecular wire junctions, Science 300, 1384 (2003)CrossRefADSGoogle Scholar
  9. 9.
    A. Pecchia, A. Di Carlo: Atomistic theory of transport in organic and inorganic nanostructures, Rep. Prog. Phys. 67, 1497 (2004)CrossRefADSGoogle Scholar
  10. 10.
    T. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Kohler, M. Amkreutz, M. Sternberg, Z. Hajnal, A. Di Carlo, S. Suhai: Atomistic simulations of complex materials: ground-state and excited-state properties, J. Phys.: Condensed Matter 14, 3015 (2002)CrossRefADSGoogle Scholar
  11. 11.
    L.V. Keldysh: Diagram Technique for Nonequilibrium Processes, Sov. Phys. JEPT 20, 1018 (1965)MathSciNetGoogle Scholar
  12. 12.
    S. Datta: Electronic Transport in Mesoscopic System (Cambridge University Press, -, 1995)Google Scholar
  13. 13.
    G. Seifert, H. Eshrig: LCAO-X alpha calculations of transition metal clusters, Phys. Stat. Sol.(b) 127, 573 (1985)CrossRefADSGoogle Scholar
  14. 14.
    D. Porezag, M.R. Pederson, T. Frauenheim, T. Köhler: Structure, stability and vibrational properties of polymerized C 60, Phys. Rev. B 52, 14 963 (1995)CrossRefGoogle Scholar
  15. 15.
    G. Seifert, D. Porezag, T. Frauenheim: Calculations of molecules clusters and solids with a simplified LCAO-LDA scheme quantum chemistry, Int. J.Q. Chem. 98, 185 (1996)CrossRefGoogle Scholar
  16. 16.
    M. Elstner, D. Prezag, G. Jugnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifer: Self-consistent charge density tight-binding method for simulation of complex materials properties, Phys. Rev. B 58, 7260 (1998)CrossRefADSGoogle Scholar
  17. 17.
    P. Maragakis, R.L. Barnett, E. Kaxiras, M. Elstner, T. Frauenheim: Electronic structure of overstretched dna, Phys. Rev. B 66, 241 104 (2002)CrossRefGoogle Scholar
  18. 18.
    W. Foulkes, R. Haydock: Tight-binding models and density-functional theory, Phys. Rev. B 39, 12–520 (1989)CrossRefGoogle Scholar
  19. 19.
    A. Svizhenko, M.P. Anantram, T.R. Govindan, B. Biegel, R. Venugopal: Two-dimensional quantum mechanical modeling of nanotransistors, J. Appl. Phys. 91, 2343 (2002)CrossRefADSGoogle Scholar
  20. 20.
    R.C. Bowen, G. Klimeck, R.K. Lake, W.R. Frensley, T. Moise: Quantitative resonant tunneling diode simulation, J. Appl. Phys. 81, 3207 (1997)CrossRefADSGoogle Scholar
  21. 21.
    T.N. Todorov: Tight-binding simulation of current-carrying nanostructures, J. Physics: Condens. Matter 14, 3049 (2002)CrossRefADSGoogle Scholar
  22. 22.
    F. Guinea, C. Tejedor, F. Flores, E. Louis: Effective two dimensional hamiltonian at surfaces, Phys. Rev. B 28, 4397 (1983)CrossRefADSGoogle Scholar
  23. 23.
    T.N. Todorov, J. Hoekstra, A.P. Sutton: Current-induced forces in atomic scale conductors, Phil. Mag. B 80, 421 (2000)CrossRefADSGoogle Scholar
  24. 24.
    S. Datta: Nanoscale device simulation: The green's function formalism, Superlattices and Microstructures 28, 253 (2000)CrossRefADSGoogle Scholar
  25. 25.
    H. Haung, A.P. Jauho: Quantum Kinetics in Transport and Optics of Semiconductors, Vol. 123 (Springer Series in Sol. State Sci., -, 1993)Google Scholar
  26. 26.
    A. Wacker, A.P. Jauho: Quantum transport: the link between standard approaches in superlattices, Phys. Rev. Lett. 80, 369 (1998)CrossRefADSGoogle Scholar
  27. 27.
    M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro: Density functional method for nonequilibrium electron transport, Phys. Rev. B 65, 165–401 (2002)CrossRefGoogle Scholar
  28. 28.
    C. Caroli, R. Combescot, P. Nozieres, D. Saint-James: Direct calculation of the tunneling current, J. Phys. C: Solid State Phys. 4, 916 (1971)CrossRefADSGoogle Scholar
  29. 29.
    Y. Xue, S. Datta, M.A. Ratner: First-principles based matrix green's function approach to molecular electronic devices: general formalism, Chem. Phys. 281, 151 (2002)CrossRefGoogle Scholar
  30. 30.
    A. Pecchia, M. Gheorghe, A. Di Carlo, P. Lugli: Modulation of the electronic transport properties of carbon nanotubes with adsorbed molecules, Synt. Met. 138, 89 (2002)CrossRefGoogle Scholar
  31. 31.
    J. Taylor, H. Guo, J. Wang: Ab initio modelling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63, 245–407 (2001)Google Scholar
  32. 32.
    M. Di Ventra, S.T. Pantelides, N.D. Lang: Current-induced forces in molecular wires, Phys. Rev. Lett. 88, 046–801 (2002)Google Scholar
  33. 33.
    K.J. Schafer, J.D. Garcia, N.H. Kwong: Self-consistent trajectories for surface scattering via classical-quantal coupling, Phys. Rev. B 36, 1872 (1987)CrossRefADSGoogle Scholar
  34. 34.
    T.N. Todorov: Time-dependent tight binding, J. Physics: Condens. Matter 13, 10–125 (2001)Google Scholar
  35. 35.
    A.P. Sutton, M.W. Finnis, D.G. Pettifor, Y. Ohta: The tight-binding bond model, J. Phys. C: Solid State Phys. 21, 35 (1988)CrossRefADSGoogle Scholar
  36. 36.
    M. Di Ventra, Y.C. Chen, T.N. Todorov: Are current-induced forces conservative?, Phys. Rev. Lett. 92, 176–803 (2004)Google Scholar
  37. 37.
    M.A. Reed, J. Chen, A.M. Rawlett, D.W. Price, J.M. Tour: Molecular random access memory cell, Appl. Phys. Lett. 78, 3735 (2001)CrossRefADSGoogle Scholar
  38. 38.
    J.M. Seminario, A.G. Zacarias, J.M. Tour: Theoretical study of a molecular resonant tunneling diode, J. Am. Chem. Soc. 122, 3015 (2000)CrossRefGoogle Scholar
  39. 39.
    J.M. Seminario, A.G. Zacarias, P.A. Derosa: Analysis of a dinitro based molecular device, J. Chem. Phys. 116, 1671 (2002)CrossRefADSGoogle Scholar
  40. 40.
    N. Mingo, K. Makoshi: Calculation of the inelastic scanning tunneling image of acetylene on Cu(100), Phys. Rev. Lett. 84, 3694 (2000)CrossRefADSGoogle Scholar
  41. 41.
    K. Stokbro, B.Y.K. Hu, C. Thirstrup, X.C. Xie: First-principles theory of inelastic currents in a scanning tunneling microscope, Phys. Rev. B 58, 8038 (1998)CrossRefADSGoogle Scholar
  42. 42.
    E.G. Emberly, G. Kirczenow: Landauer theory, inelastic scattering, and electron transport in molecular wires, Phys. Rev. B 61, 5740 (2000)CrossRefADSGoogle Scholar
  43. 43.
    H. Ness, A.J. Fisher: Coherent electron injection and transport in molecular wires: inelastic tunneling and electron-phonon interactions, Chem. Phys. 281, 279 (2002)CrossRefADSGoogle Scholar
  44. 44.
    B. Dong, H.L. Cui, X.L. Lei: Photon-phonon-assisted tunneling through a single molecule quantum dot, Phys. Rev. B 68, 205 315 (2004)Google Scholar
  45. 45.
    M. Galperin, M. Ratner, A. Nitzan: On the line widths of vibrational features in inelastic electron tunneling spectroscopy, Nano Lett. 4, 1605 (2004)CrossRefADSGoogle Scholar
  46. 46.
    Y. Yourdshahyan, H.K. Zhang, A.M. Rappe: n-alkyl thiol head-group interactions with the au(111) surface, Phys. Rev. B 63, 081 405R (2001)CrossRefGoogle Scholar
  47. 47.
    J. Gottshlck, B. Hammer: A density functional theory study of the adsorption of sulfur, marcapto, and methylthiolate on Au(111), J. Chem. Phys. 116, 784 (2002)CrossRefADSGoogle Scholar
  48. 48.
    W. Wang, T. Lee, I. Kretzschmar, M. Reed: Inelastic electron tunneling spectroscopy of an alkanedithiol self-assembled monolayer, Nano Lett. 4, 643 (2004)CrossRefADSGoogle Scholar
  49. 49.
    R.O. Jones, O. Gunnarsson: The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61, 689 (1989)CrossRefADSGoogle Scholar
  50. 50.
    A. Szabo, N.S. Ostlund: Modern Quantum Chemistry (Dover, 1996)Google Scholar
  51. 51.
    G. Onida, L. Reining, A. Rubio: Electronic excitations: density-functional versus many-body green's function approaches, Rev. Mod. Phys. 74, 601 (2002)CrossRefADSGoogle Scholar
  52. 52.
    C.O. Almbladh, U. von Barth: Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues, Phys. Rev. B 31, 3231 (1985)CrossRefADSGoogle Scholar
  53. 53.
    J.P. Perdew: Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B 33, 8822 (1986)CrossRefADSGoogle Scholar
  54. 54.
    C. Lee, W. Yang, R.G. Parr: Development of the colle-salvetti correlation energy formula into a functional of the electron density, Phys. Rev. B 37, 785 (1987)CrossRefADSGoogle Scholar
  55. 55.
    A.D. Becke: Density-functional thermochemistry. the role of exact exchange, J. Chem. Phys. 98, 5648 (1993)CrossRefADSGoogle Scholar
  56. 56.
    P. Delaney, J.C. Greer: Correlated electron transport in molecular electronics, Phys. Rev. Lett. 93, 036–805 (2004)Google Scholar
  57. 57.
    L. Hedin: New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem, Phys. Rev. 139, A796 (1965)CrossRefADSGoogle Scholar
  58. 58.
    T.A. Niehaus, M. Rohlfing, F. Della Sala, A. Di Carlo, T. Frauenheim: Quasiparticle energies for large molecules: a tight-binding gw approach, To appear on Phys. Rev. B pp. cond-mat/0411 024 (2004)Google Scholar
  59. 59.
    N.T. Maitra, I. Souza, K. Burke: Current-density functional theory of the response of solids, Phys. Rev. B 68, 045–109 (2003)Google Scholar
  60. 60.
    A. Pecchia, M. Gheorghe, A. Di Carlo, P. Lugli, T. Niehaus, R. Sholz: Role of thermal vibrations in molecular wire conduction, Phys. Rev. B 68, 235–321 (2003)CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • A. Di Carlo
    • 1
  • A. Pecchia
    • 1
  • L. Latessa
    • 1
  • Th. Frauenheim
    • 2
  • G. Seifert
    • 3
  1. 1.Dept. Elect. Eng.University of Rome “Tor Vergata”RomaItaly
  2. 2.Dept. of Theoretical PhysicsUniversity of PaderbornPaderbornGermany
  3. 3.Institut f. Physikalische ChemieTechnische Universität DresdenDresdenGermany

Personalised recommendations