Advertisement

Foundations of Molecular Electronics – Charge Transport in Molecular Conduction Junctions

  • Joshua Jortner
  • Abraham Nitzan
  • Mark A. Ratner
Part of the Lecture Notes in Physics book series (LNP, volume 680)

Abstract

The most fundamental structure involved in molecular electronics is a molecular transport junction, consisting of one (ideally) or more molecules extending between two electrodes. These junctions combine the fundamental process of intramolecular electron transfer with the mixing of molecular and continuum levels at the electrodes and the nonequilibrium process of voltage-driven currents. Much of this book is devoted to the complicated but significant behaviors that arise from this conjunction. This introductory chapter attempts to sketch some of the principles and also some of the unresolved issues that characterize molecular transport junctions.

Keywords

Electron Transfer Scanning Tunneling Microscopy Charge Transport Coulomb Blockade Nuclear Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Joachim, J.K. Gimzewski, and A. Aviram: Electronics using hybrid-molecular and mono-molecular devices, Nature 408, 541 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    A. Nitzan and M. Ratner: Electron transport in molecular wire junctions, Science 300, 1384 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    A. Nitzan: Electron transmission through molecules and molecular interfaces, Ann. Rev. Phys. Chem. 52, 681 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    P. Hanggi, M. Ratner, S. Yaliraki eds., Chemical Physics 281, 111 (2002).Google Scholar
  5. 5.
    J.R. Heath and M.A. Ratner: Molecular electronics, Physics Today 56, 43 (2003); C.R. Kagan and M.A. Ratner, eds., MRS Bulletin, 29, #6 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    D.M. Adams, L. Brus, C.E.D. Chidsey, et al.: Charge transfer on the nanoscale: Current status, J. Phys. Chem. B 107, 6668 (2003).CrossRefGoogle Scholar
  7. 7.
    M.C. Petty, M.R. Bryce, and D. Bloor, Introduction to Molecular Electronics (Oxford University Press, Oxford, 1995); C.A. Mirkin, and M.A. Ratner: Molecular electronics, Annu. Rev. Phys. Chem., 43, 719 (1992); A. Aviram, ed., Molecular Electronics - Science and Technology (American Institute of Physics, College Park, MD, 1992); A. Aviram, M.A. Ratner, and V. Mujica: Molecular electronics - science and technology, eds., Ann. N.Y. Acad. Sci., 852, (1998); J. Jortner, and M.A. Ratner, eds. Molecular Electronics (Blackwell Science, Cambridge, MA, 1997); M.A. Ratner, and M.A. Reed, Encyclopedia of Science and Technology, 3rd ed., (Academic Press, New York, 2002); V. Mujica, and M.A. Ratner, in Handbook of Nanoscience, Engineering and Technology, W.A. Goddard III, D.W. Brenner, S.E. Lyshevshi, and G.J. Iafrate, eds. (CRC Press, Boca Raton, FL, 2002); M.A. Reed, and T. Lee, eds., Molecular Nanoelectronics (American Scientific Publishers, Stevenson Ranch, CA, 2003).Google Scholar
  8. 8.
    Jeffrey R. Reimers, et al.: Molecular Electronics III, eds., Ann. N.Y. Acad. Sci., 1006, (2003).Google Scholar
  9. 9.
    Thomas Tsakalakos, Ilya A. Ovid'ko and Asuri K. Vasudevan, eds., Nanostruc-tures: Synthesis, Functional Properties and Applications, (Kluwer, Dordrecht, 2003).Google Scholar
  10. 10.
    A. Aviram, M. Ratner, and V. Mujica, eds., Molecular electronics II, Ann. N.Y. Acad. Sci., 960, (2002).Google Scholar
  11. 11.
    J. Jortner, and M. Bixon, in Advances in Chemical Physics, I. Prigogine, and S. Rice, eds. 106 (Wiley, New York, 1999); A.M. Kuznetsov, Charge Transfer in Physics, Chemistry and Biology (Gordon & Breach, New York, 1995); A.M. Kuznetsov, J. Ulstrup, A.M.K., et al., Electron Transfer in Chemistry and Biology: An Introduction to the Theory (Wiley, New York, 1998).Google Scholar
  12. 12.
    R.A. Marcus: Chemical and electrochemical electron-transfer theory, Ann. Rev. Phys. Chem. 15, 155 (1964).ADSCrossRefGoogle Scholar
  13. 13.
    J.R. Miller, J.V. Beitz, and R. Huddleston: Effect of free energy on rates of electron transfer between molecules, J. Am. Chem. Soc. 106, 5057 (1984).CrossRefGoogle Scholar
  14. 14.
    J. Jortner and B. Pullman, eds., Perspectives in Photosynthesis. Dordrecht: Kluwer, 1990.Google Scholar
  15. 15.
    J. Jortner, M. Bixon, T. Langenbacher, and M.E. Michel-Beyerle: Charge transfer and transport in DNA, Proceed. Natl. Acad. Sci. USA 95, 12759 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    M. Bixon and J. Jortner, [1], p. 35.Google Scholar
  17. 17.
    J. Ulstrup and J. Jortner: The effect of intramolecular quantum modes on free energy relationships for electron transfer reaction, J. Chem. Phys. 63, 4358 (1975).ADSCrossRefGoogle Scholar
  18. 18.
    M. Bixon and J. Jortner: Solvent relaxation dynamics and electron transfer, Chem. Phys. 176, 467 (1993).ADSCrossRefGoogle Scholar
  19. 19.
    T. Holstein: Polaron motion. I. Molecular crystal model, Ann. Phys. (N. Y.) 8, 325, 343 (1959).zbMATHADSCrossRefGoogle Scholar
  20. 20.
    H. McConnell: Intramolecular charge transfer in aromatic free radicals, J. Chem. Phys. 35, 508 (1961).ADSCrossRefGoogle Scholar
  21. 21.
    J. Jortner: Temperature dependent activation energy for electron transfer between biological molecules, J. Chem. Phys. 64, 4860 (1976); V. Mujca, M. Kemp, M. Roitberg, and M.A. Ratner: Electron conduction in molecular wires. I. A scattering formalism and II. Application to scanning tunneling microscopy, J. Chem. Phys. 101, 6849, 6856 (1994).ADSCrossRefGoogle Scholar
  22. 22.
    J. Tersoff, and D.R. Hamann: Theory of the scanning tunneling microscope, Phys. Rev. B, 31, 805 (1985).ADSCrossRefGoogle Scholar
  23. 23.
    R. Landauer: Spatial variation of currents and field due to localized scatterers in metallic conduction, IBM J. Res. Dev. 1, 223, (1957); R. Landauer: Electrical resistance of disordered one-dimensional lattices, Phil. Mag., 21, 863 (1970).MathSciNetCrossRefGoogle Scholar
  24. 24.
    C.W.J. Beenakker, and H. van Houten: Advances in research and applications. Qantum transport in semiconductor nanostructures, Solid State Physics, 44, 1 (Academic Press, New York, 1991).Google Scholar
  25. 25.
    L.V. Keldysh, Sov. Phys. JETP, 20, 1018 (1965).MathSciNetGoogle Scholar
  26. 26.
    L. P. Kadanoff, and G. Baym, Quantum Statistical Mechanics; Green's function Methods in Equilibrium and Nonequilibrium (W.A. Benjamin, New York, 1962).Google Scholar
  27. 27.
    Y. Meir and N.S. Wingreen: Landauer formula for the current through an interacting electron region, Phys. Rev. Lett. 68, 2512 (1992)ADSCrossRefGoogle Scholar
  28. 28.
    T. Seideman, and W.H. Miller: Quantum mechanical reaction probabilities via a discrete variable representation-absorbing boundary condition Green's function, J. Chem. Phys., 97, 2499 (1992); T. Seideman, and W.H. Miller: Calculation of the cumulative reaction probability via a discrete variable representation with absorbing boundary conditions, J. Chem. Phys, 96, 4412 (1992).ADSCrossRefGoogle Scholar
  29. 29.
    S. Datta, Electric transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995); S. Datta, to be published.Google Scholar
  30. 30.
    Y. Xue, S. Datta, and M.A. Ratner: Charge transfer and “band lineup” in molecular electronic devices: A chemical and numerical interpretation, J. Chem. Phys., 115, 4292 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    L.E. Hall, J.R. Reimers, N.S. Hush, et al.: Formalism, analytical model, and a priori Green's-function-based calculations of the current-voltage characteristics of molecular wires, J. Chem. Phys., 112, 1510 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    S. Datta, W.D. Tian, S.H. Hong, et al.: Current-voltage characteristics of selfassembled monolayers by scanning tunneling microscopy, Phys. Rev. Lett., 79, 2530 (1997).ADSCrossRefGoogle Scholar
  33. 33.
    H. Ness, and A.J. Fisher: Quantum inelastic conductance through molecular wires, Phys. Rev. Lett., 83, 452 (1999); E.G. Petrov, I.S. Tolokh, and V. May: The magnetic-field influence on the inelastic electron tunnel current mediated by a molecular wire, J. Chem. Phys., 109, 9561 (1998); E.G. Emberly, and G. Kirczenow: Electron standing-wave formation in atomic wires, Phys. Rev. B, 60, 6028 (1999); E.G. Emberly, and G. Kirczenow: Models of electron transport through organic molecular monolayers self-assembled on nanoscale metallic contacts, Phys. Rev. B, 64, 235412 (2001); M. Brandbyge et al.: Density-functional method for nonequilibrium electron transport, Phys. Rev. B, 65, 165401 (2002); B. Larade, et al.: Conductance, I-V curves, and negative differential resistance of carbon atomic wires, Phys. Rev. B, 64, 075420 (2001); J. Taylor, H. Guo, J. Wang: Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60 device, Phys. Rev. B, 63, 121104(R) (2001); M. Magoga, and C. Joachim: Minimal attenuation for tunneling through a molecular wire, Phys. Rev. B, 57, 1820 (1998); M. Magoga, and C. Joachim: Conductance of molecular wires connected or bonded in parallel, Phys. Rev. B, 59, 16011 (1999); P. Stampfus, et al., in Proceedings NIC Symposium; D. Wolf, G. Munster, M. Kremer, eds., 20, 101 (2003); R. Baer and D. Neuhauser: Ab initio electrical conductance of a molecular wire, Int. J. Quant. Chem., 91, 524 (2003); R. Baer, et al: Ab initio study of the alternating current impedance of a molecular junction, J. Chem. Phys. 120, 3387 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    J.K. Tomfohr, and O. Sankey: Complex band structure, decay lengthg, and Fermi level alignment in simple molecular electronic systems, Phys. Rev. B, 65, 245105 (2002); B. Larade, J. Taylor, H. Mehrez, and H. Guo: Conductance, I-V curves, and negative differential resistance of carbon atomic wires, Phys Rev. B, 64, 075420 (2001); J. Taylor, H. Guo, and J. Wang: Ab initio modeling of open systems; Charge transfer, electron conduction, and molecular switching of a C60 device, Phys. Rev. B, 63, 121104(R) (2001); H. Mehrez, G. Hong, J. Wang, and C. Roland: Carbon nanotubes in the Coulomb blockade regime, Phys. Rev. B, 63, 245410/1 (2001); A. di Carlo et al.: Theoretical tools for transport in molecular nanostructures, Physica B, 314, 86 (2002); J.C. Cuevas et al.: theoretical description of the electrical conduction in atomic and molecular junctions, Nanotechnology, 14, R29 (2003); J.J. Palacios et al.: First-principal approach to electrical transport in atomic-scale nanostructures, Phys. Rev. B, 66, 035322 (2002).ADSCrossRefGoogle Scholar
  35. 35.
    Y.Q. Xue and M.A. Ratner: Microscopic study of electrical transport through individual molecules with metallic contacts. (2). Effect fo the interface structure, Phys. Rev. B, 68, 115407 (2003); and: Schottky barrier at metal-finite semiconduction carbon nanotube interfaces, Appl. Phys. Lett. 83, 2429 (2003).ADSCrossRefGoogle Scholar
  36. 36.
    T. Seideman, and H. Guo: Quantum transport and current-triggered dynamics in molecular tunnel junctions, J. Theor. Comp. Chem., 2, 439 (2004).CrossRefGoogle Scholar
  37. 37.
    N.D. Lang: Resistance of atomic wires, Phys. Rev. B, 52, 5335 (1995).ADSCrossRefGoogle Scholar
  38. 38.
    N.D. Lang, and P. Avouris: Carbon-atom wires: Charge-transfer doping, voltage drop, and the effect of distortions, Phys. Rev. Lett., 84, 358 (2000).ADSCrossRefGoogle Scholar
  39. 39.
    M. diVentra, S. Pantelides, and N. Lang: Erratum: Current-induced forces in molecular wires [Phys. Rev. Lett., 88, 046801 (2002)], Phys. Rev. Lett., 89, 139902 (2002); M. Di Ventra, and S.T. Pantelides: Scanning tunneling microscopy images: A full ab initio approach, Phys. Rev. B, 59, R5320 (1999).ADSCrossRefGoogle Scholar
  40. 40.
    S.N. Rashkeev, M. Di Ventra, and S.T. Pantelides: Transport in molecular transistors: Symmetry effects and nonlinearities, Phys. Rev. B, 66, 033301/1 (2002); Y. Zhongqin, N.D. Lang, and M. Di Ventra: Effects of geometry and doping on the operation of molecular transistors, App. Phys. Lett., 82, 1938 (2003); S.T. Pantelides, M. Di Ventra, and N.D. Lang: First-principles simulations of molecular electronics, Ann. N.Y. Acad. Sci., 960, 177 (2002); S.T. Pantelides, M. Di Ventra, N.D. Lang, and S.N. Rashkeev: Molecular electronics by the numbers, IEEE Transactions on Nanotechnology, 1, 86 (2002); M. Di Ventra, N.D. Lang, and S.T. Pantelides: Electronic transport in single molecules, Chem. Phys., 281, 189 (2002); M. Di Ventra, S.T. Pantelides, and N.D. Lang: Current-induced forces in molecular wires, Phys. Rev. Lett., 88, 046801 (2002); M. Di Ventra, and N.D. Lang: Transport in nanoscale conductors from first principles, Phys. Rev. B, 65, 045402 (2002).ADSCrossRefGoogle Scholar
  41. 41.
    A. Troisi, and M.A. Ratner: Molecular wires conductance: Some theoretical and computational aspects, Molecular Nanoelectronics, M.A. Reed, and T. Lee, eds., 1 (American Scientific Publishers, Stevenson Ranch, CA, 2003).Google Scholar
  42. 42.
    R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, M.C.V. Hemert, and J.M. van Ruitenbeek: Measurement of the conductance of a hydrogen molecule, Nature, 419, 906 (2002).ADSCrossRefGoogle Scholar
  43. 43.
    M. Fuhrer, S.A. Getty, L. Wang, C. Engtrakul, and L. R. Sita: Near-perfect conduction through a ferrocene-based molecular wire, unpublished.Google Scholar
  44. 44.
    A. Nitzan: A relationship between electron-transfer rates and molecular conduction, J. Phys. Chem. A, 105, 2677 (2001).CrossRefGoogle Scholar
  45. 45.
    A. Nitzan: The relationship between electron-transfer rate and molecular conduction. (2). The sequential hopping case, Israel J. Chem., 42, 163 (2002).CrossRefGoogle Scholar
  46. 46.
    R.A. Marcus: On the theory of electron-transfer reactions. (6). Unified treatment for homogeneous and electrode reactions, J. Chem. Phys., 43, 679 (1965); M.D. Newton: Quantum chemical probes of electron-transfer kinetics: The nature of donor acceptor interactions, Chem. Rev., 91, 767 (1991).ADSCrossRefGoogle Scholar
  47. 47.
    D.M. Adams et al.: Charge transfer on the nanoscale: Current status, J. Phys. Chem. B, 107, 6668 (2003)CrossRefGoogle Scholar
  48. 48.
    J. Park, A.N. Pasupathy, J.I. Goldsmith, C.C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H.D. Abruna, P.L. McEuen, and D.C. Ralph: Coulomb blockade and the Kondo effect in single-atom transistors, Nature, 417, 722 (2002); W. Liang et al.: Kondo resonance in a single-molecule transistor, Nature 417, 725 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.-L. Bredas, N. Stuhr-Hansen, P. Hedegard, and T. Bjornholm: Single-electron transistor of a single organic molecule with access to several redox states, Nature, 425, 698 (2003).ADSCrossRefGoogle Scholar
  50. 50.
    D. Segal and A. Nitzan: Steady-state quantum mechanics of thermally relaxing systems, Chem. Phys. 268, 315 (2001); D. Segal, and A. Nitzan: Heating in current carrying molecular junctions, J. Chem. Phys., 117, 3915 (2002).ADSCrossRefGoogle Scholar
  51. 51.
    D. Segal, A. Nitzan, and P. Hanggi: Thermal conductance through molecular wires, J. Chem. Phys., 119, 6840 (2003).ADSCrossRefGoogle Scholar
  52. 52.
    Y.-C. Chen, M. Zwolak, and M. DiVentra: Local heating in nanoscale conductors, Nano Lett., 3, 1691 (2003); T.N. Todorov: Local heating in ballistic atomic-scale contacts, Philosoph. Mag. B, 77(4), 965 (1998); M.J. Montgomery, T.N. Todorov, and A.P. Sutton: Power dissipation in nanoscale conductors, J. Phys.: Cond. Matt., 14, 5377 (2002).ADSCrossRefGoogle Scholar
  53. 53.
    B.C. Stipe, M.A. Rezaei, and W. Ho: Inducing and viewing the rotational motion of a single molecule, Science, 279, 1907 (1998).ADSCrossRefGoogle Scholar
  54. 54.
    B.C. Stipe, M.A. Rezaei, and W. Ho: Localiztion of inelastic tunneling and the determination of atomic-scale structure with chemical specifity, Phys. Rev. Lett., 82, 1724 (1999).ADSCrossRefGoogle Scholar
  55. 55.
    T. Komeda, Y. Kim, M. Kawai, B.N.J. Persson, and H. Ueba: Lateral hopping of molecules induced by excitation of internal vibration mode, Science, 295, 2055 (2002).ADSCrossRefGoogle Scholar
  56. 56.
    S. Alavi, B. Larade, J. Taylor, H. Guo, and T. Seideman: Current-triggered vibrational excitation in single-molecule transistors, Chem. Phys., 281, 293 (2002); T. Seideman: Current-triggered dynamics in molecular-scale devices, J. Phys.: Cond. Matt., 15, R521 (2003); B.N.J. Persson, and H. Ueba; Theory of inelastic tunneling induced motion of adsorbates on metal surfaces, Surf. Sci., 12, 502 (2002).CrossRefGoogle Scholar
  57. 57.
    S.-W. Hla, L. Bartels, G. Meyer, and K.-H. Rieder: Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: Towards single molecule engineering, Phys. Rev. Lett., 85, 2777 (2000); G.V. Nazin, X.H. Qiu, and W. Ho: Visualization and spectroscopy of a metal-molecule-metal bridge, Science, 302, 77 (2003); J.R. Hahn, and W. Ho: Oxidation of a single carbon monoxide molecule manipulated and induced with a scanning tunneling microscope, Phys. Rev. Lett., 87, 166102 (2001).ADSCrossRefGoogle Scholar
  58. 58.
    E.L. Wolf, Principles of electron tunneling spectroscopy (Oxford University Press, New York, 1985); K.W. Hipps and U. Mazur: Inelastic electron tunneling: An alternative molecular spectroscopy, J. Phys. Chem., 97, 7803 (1993).Google Scholar
  59. 59.
    H.J. Lee and W. Ho: Single-bond formation and characterization with a scanning tunneling microscope, Science, 286, 1719 (1999); N. Lorente, M. Persson, L.J. Lauhon, and W. Ho: Symmetry selection rules for vibrationally inelastic tunneling, Phys. Rev. Lett., 86, 2593 (2001); J.R. Hahn, and W. Ho: Single molecule imaging and vibrational spectroscopy with a chemical modified tip of a scanning tunneling microscope, Phys. Rev. Lett., 87, 196102 (2001); L.J. Lauhon and W. Ho: Direct observation of the quantum tunneling of single hydrogen atoms with a scanning tunneling microscope, Phys. Rev. Lett., 85, 4566 (2000); J. Gaudioso, J.L. Laudon, and W. Ho: Vibrationally mediated negative differential resistance in a single molecule, Phys. Rev. Lett., 85, 1918 (2000); L.J. Lauhon and W. Ho: Single-electron vibrational spectroscopy and microscopy: CO on Cu(001) and Cu(110), Phys. Rev. B, 60, R8525 (1999); H.J. Lee and W. Ho: Structural determination by single-molecule vibrational spectroscopy and microscopy: Contrast between copper and iron carbonyls, Phys. Rev. B, 61, R16347 (2000).CrossRefGoogle Scholar
  60. 60.
    J.R. Hahn, H.J. Lee, and W. Ho: Electronic resonance and symmetry in single-molecule inelastic electron tunneling, Phys. Rev. Lett., 85, 1914 (2000).ADSCrossRefGoogle Scholar
  61. 61.
    N.B. Zhitenev, H. Meng, and Z. Bao: Conductance of small molecular junctions, Phys. Rev. Lett., 88, 226801 (2002); H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A.P. Alivisatos, and P.L. McEuen: Nanomechanical oscillations in a single-C60 transistor, Nature, 407, 57 (2000).ADSCrossRefGoogle Scholar
  62. 62.
    W. Wang, T. Lee, I. Kretzschmar, and M.A. Reed: Inelastic electron tunneling spectroscopy of alkanedithiol self-assembled monolayers, Nano Lett., 4, 643 (2004); J.G. Kushmerick, J. Lazorcik, C.H. Patterson, R. Shashidhar, D.S. Seferos, and G.C. Bazan: Vibronic contributions to charge transport across molecular junctions, Nano Lett., 4, 639 (2004).ADSCrossRefGoogle Scholar
  63. 63.
    A. Nitzan, M. Galperin, and M.A. Ratner: Inelastic electron tunneling spec-troscopy in molecular junctions: Peaks and dips, submitted for publication (cond-mat/0405472).Google Scholar
  64. 64.
    A. Nitzan, J. Jortner, J. Wilkie, et al.: Tunneling time for electron transfer reactions, J. Phys. Chem. B, 104, 5661–5665 (2000).CrossRefGoogle Scholar
  65. 65.
    U. Peskin, A. Edlund, I. Bar-On, et al.: Transient resonance structures in electron tunneling through water, J. Chem. Phys., 111, 7558 (1999).ADSCrossRefGoogle Scholar
  66. 66.
    E. Yablonovitch: The chemistry of solid-state electronics, Science, 246, 347 (1989).ADSCrossRefGoogle Scholar
  67. 67.
    R. Venugopal, M. Paulsson, S. Goasguen, S. Datta, and M. Lundstrom: A simple quantum mechanical treatment of scattering in nanoscale transistors, J. App. Phys., 93, 5613 (2003); M. Buttiker: Four-terminal phase-coherent conductance, Phys. Rev. Lett., 57, 1761 (1986).ADSCrossRefGoogle Scholar
  68. 68.
    M. Bixon, and J. Jortner: Vibrational coherence in nonadiabatical dynamics, J. Chem. Phys., 107, 1470 (1997).ADSCrossRefGoogle Scholar
  69. 69.
    M. Bixon, and J. Jortner: Electron transfer via bridges, J. Chem. Phys., 107, 5154 (1997).ADSCrossRefGoogle Scholar
  70. 70.
    Y. Selzer, et al.: Temperature effects on conduction through a molecular junction, Nanotechnology 15, S483 (2004); and: Thermally activated conduction in molecular junctions, J. Am. Chem. Soc. 126, 4052 (2004).ADSCrossRefGoogle Scholar
  71. 71.
    B. Giese et al.: Direct observation of the hole transfer through DNA by hopping between adenine beaes and by tunneling, Nature 412, 318 (2001).ADSCrossRefGoogle Scholar
  72. 72.
    D. Segal, A. Nitzan, W.B. Davis, M.R. Wasilewski, and M.A. Ratner: Electron transfer rates in bridged molecular systems. 2. A steady-state analysis of coherent tunneling and thermal transitions, J. Phys. Chem. B, 104, 3817 (2000); D. Segal, and A. Nitzan: Conduction in molecular junctions: Inelastic effects, Chem. Phys., 281, 235 (2002); D. Segal, and A. Nitzan: Steady-state quantum mechanics of thermally relaxing systems, Chem. Phys., 268, 315 (2001), and references therein.CrossRefGoogle Scholar
  73. 73.
    D. Segal, and A. Nitzan: Heating in current carrying molecular junctions, J. Chem. Phys., 117, 3915 (2002).ADSCrossRefGoogle Scholar
  74. 74.
    X.H. Qiu, G.V. Nazin, and W. Ho: Vibronic states in single molecule electron transport, Phys. Rev. Lett., 92, 206102 (2004).ADSCrossRefGoogle Scholar
  75. 75.
    B.N.J. Persson, and A. Baratoff: Inelastic electron tunneling from a metal tip: The contribution from resonant processes, Phys. Rev. Lett., 59, 339 (1987).ADSCrossRefGoogle Scholar
  76. 76.
    A. Bayman, P. Hansma, and W.C. Kaska: Shifts and dips in inelastic-electron-tunneling spectra due to the tunnel-junction environment, Phys. Rev. B, 24, 2449 (1981).ADSCrossRefGoogle Scholar
  77. 77.
    M. Galperin, M.A. Ratner, and A. Nitzan: Hysteresis, switching and negative differential reistance in molecular junctions: A polaron model, Nano Letters, 5(1), 125 (2005).ADSCrossRefGoogle Scholar
  78. 78.
    M.R. Wasielewski: Photoinduced electron transfer in supramolecular systems for artificial photosynthesis, Chem. Rev., 92, 435 (1992).CrossRefGoogle Scholar
  79. 79.
    G. Closs, J.R. Miller: Intramolecular long-distance electron transfer in organic molecules, Science, 240, 440 (1988).ADSCrossRefGoogle Scholar
  80. 80.
    J. Lehmann, S. Kohler, P. Hanggi, and A. Nitzan: Molecular wires acting as coherent quantum ratchets, Phys. Rev. Lett., 88, 228305 (2002); J. Lehmann, S. Kohler, P. Hanggi, and A. Nitzan: Rectification of laser-induced eletronic transport through molecules, J. Chem. Phys., 118, 3283 (2002); S. Kohler, S. Camalet, M. Strass, J. Lehmann, G.-L. Ingold, and P. Hanggi: Charge transport through a molecule driven by a high-frequency field, Chem. Phys., 296, 243 (2004); J. Lehmann, S. Camalet, S. Kohler, and P. Hanggi: Laser controlled molecular switches and transistors, Chem. Phys. Lett., 368, 282 (2003); A. Keller, O. Atabek, M. Ratner, and V. Mujica: Laser-assisted conductance of molecular wires, J. Phys. B Atomic Molecular & Optical Physics, 35, 4981 (2002); A. Tikhonov, R.D. Coalson, and Y. Dahnovsky: Calculating electron transport in a tight-binding model of a field driven molecular wire: Floquet theory, J. Chem. Phys., 116, 10909 (2002); A. Tikhonov, R.D. Coal-son, and Y. Dahnovsky: Calculating electron current in a tight-binding model of a field driven molecular wire: Application to xylyl-dithiol, J. Chem. Phys., 117, 567 (2002).ADSCrossRefGoogle Scholar
  81. 81.
    Y. Kamada, N. Naka, S. Saito, N. Nagasawa, Z.M. Li, and Z.K. Tang: Photo-irradiation effects on electrical conduction of single wall carbon nanotubes, Solid State Communications, 123, 375 (2002); V. Gerstner, A. Knoll, W. Pfeiffer, A. Thon, and G. Gerber: Femtosecond laser assisted scanning tunneling microscopy, J. Appl. Phys., 88, 4851 (2000); R.J. Schoelkopf, A.A. Kozhevnikov, D.E. Prober, and M.J. Rooks: Observation of “photon-assisted” shot-noise in a phase-coherent conductor, Phys. Rev. Lett., 80, 2437 (1998); R.J. Schoelkopf, P.J.B. , A.A. Kozhevnikov, D.E. Prober, and M.J. Rooks: Frequency dependence of shot noise in a diffusive mesoscopic conductor, Phys. Rev. Lett., 78, 3370 (1997); B.J. Keay, S.J. Allen, Jr., J. Galán, J.P. Kamin-ski, K.L. Campman, A.C. Gossard, U. Bhattacharya, and M.J.W. Rodwell: Photon-assisted electric field domains and multiphoton-assisted tunneling in semiconductor superlattices, Phys. Rev. Lett., 75, 4098 (1995); Dulic D, et al.: One-way optoelectronic switching of photochromic molecules on gold, Phys. Rev. Lett., 91, 207402 (2003).ADSCrossRefGoogle Scholar
  82. 82.
    T. Frauenheim, et al.: Atomistic simulations of complex materials: Ground state and excited-state properties, J. Phys. Cond. Matt., 14, 3015 (2002).ADSCrossRefGoogle Scholar
  83. 83.
    C.W. Bauschlicher, Jr., A. Ricca, Y. Xue, and M.A. Ratner: Current-voltage curves for molecular junctions: pyrene versus diphenylacetylene, Chem. Phys. Lett., 390, 246 (2004); J.M. Seminario, L.E. Cordova and P.A. Derosa: An ab initio approach to the calculation of current-voltage characteristics of programmable molecular devices, Proc. IEEE 91, 1958 (2000); Y. Xue, S. Datta, and M.A. Ratner: Charge transfer and “band lineup” in molecular electronic devices: A chemical and numerical interpretation, J. Chem. Phys., 115, 4292 ( 2001).ADSCrossRefGoogle Scholar
  84. 84.
    K. Tagami, L. Wang, and M. Tsukada: Interface sensitivity in quantum transport through single molecules, Nano Lett., 4, 209 (2004); E. Emberly and G. Kirczenow: Molecular spintronics: Spin-dependent electron transport in molecular wires, Chem. Phys. 281, 311(2002); E.G Petrov, I.S. Tolokh and V. May: Magnetic field control of an electron tunnel current through a molecular wire, J. Chem. Phys. 108, 4386(1998).ADSCrossRefGoogle Scholar
  85. 85.
    Z.Q. Yang and M. Di Ventra: Nonlinear current-induced forces in Si atomic wires, Phys. Rev. B 67, 161311 (2003).ADSCrossRefGoogle Scholar
  86. 86.
    X.-Y. Zhu: Charge transport at metal-molecule interfaces: A spectroscopic view, J. Phys. Chem. B, 108, (2004).Google Scholar
  87. 87.
    S. Datta, W. Tian, S. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak: Current-voltage characteristics of self-assembled monolayers by scanning tunnelling microscopy, Phys. Rev. Lett., 79, 2530 (1997); W. Tian, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak: Conductance spectra of molecular wires, J. Chem. Phys., 109, 2874 (1998); Y. Xue, S. Datta, S. Hong, R. Reifenberger, J.I. Henderson, and C.P. Kubiak: Negative differential resistance in the scanning tunneling spectroscopy of organic molecules, Phys. Rev. B, 59, R7852 (1999).ADSCrossRefGoogle Scholar
  88. 88.
    V. Mujica, A.E. Roitberg and M. Ratner: Molecular wire conductance: Eloctrostatic potential spatial profile, J. Chem. Phys. 112, 6834 (2000)ADSCrossRefGoogle Scholar
  89. 89.
    A. Xue, and M.A. Ratner: Microscopic study of electrical transport through individual molecules with metallic contacts. II. Effect of the interface structure, Phys. Rev. B, 68, 115407 (2003).ADSCrossRefGoogle Scholar
  90. 90.
    C. Liang, A.W. Ghosh, M. Paulsson, S. Datta: Electrostatic potential profiles of molecular conductors, Phys. Rev. B, 69, 115302 (2004).ADSCrossRefGoogle Scholar
  91. 91.
    M. Di Ventra, S.T. Pantelides, and N.D. Lang: The benzene molecule as a molecular resonant-tunneling transistor, App. Phys. Lett., 76, 3448 (2000).ADSCrossRefGoogle Scholar
  92. 92.
    A. Bachtold, et al.: Scanned probe microscopy of electronic transport in carbon nanotubes, Phys. Rev. Lett., 84, 6082 (2000).ADSCrossRefGoogle Scholar
  93. 93.
    Y. Karzazi, et al.: Influence of contact geometry and molecular derivatization on the interfacial interactions between gold and conjugated wires, Chem. Phys. Lett., 387, 502 (2004); H. Basch, and M.A. Ratner: Binding at molecule/gold transport interfaces. II. Orbitals and density of states, J. Chem. Phys., 119, 11943 (2003).ADSCrossRefGoogle Scholar
  94. 94.
    F. Zahid, M. Paulsson and S. Datta: Electrical conduction through molecules, in Advanced Semiconductors and Organic Nanotechniques, H. Morkoc, ed., (Academic Press, New York, 2003).Google Scholar
  95. 95.
    F. Zahid, M. Paulsson et al., to be published.Google Scholar
  96. 96.
    A. Rassolov, M.A. Ratner, and J.A. Pople: Semiempirical models for image eletrostatics. I. Bare external charge, J. Chem. Phys., 114, 2062 (2001).ADSCrossRefGoogle Scholar
  97. 97.
    V. Mujica, M. Kemp, and M.A. Ratner: Electron conduction in molecular wires. I. A scattering formalism and II. Application to scanning tunneling microscopy, J. Chem. Phys., 101, 6849, 6856 (1994).ADSCrossRefGoogle Scholar
  98. 98.
    D.S. Kosov: Schrödinger equation for current carrying states, J. Chem. Phys., 116, 6368 (2002); J. Tomfohr, O. F. Sankey: Theoretical analysis of electron transport through organic molecules, J. Chem. Phys., 120, 1542 (2004); K. Thygesen et al., work in progress; R. Car, K. Burke, et al, work in progress.ADSCrossRefGoogle Scholar
  99. 99.
    J. Reichert, H.B. Weber, M. Mayor, H.V. Lohneysen: Low-temperature conductance measurements on single molecules, Appl. Phys. Lett., 82, 4137 (2003); J.O. Lee et al.: Electrical transport study of phenylene-based π-conjugated molecules in a three terminal geometry, Annals Of The New York Academy Of Sciences, 1006, 122 (2003); D. Janes et al., to be published; M.A. Reed, et al.: Conductance of a molecular junction, Science, 278, 252 (1997). The structure assumed here may be incorrect: e.g. P.L. Pugmire, M.J. Tarlov, R.D. van Zee: The structure of benzenedimethanethiol self-assembled monolayers on gold grown by solution and vapor techniques, Langmuir, 19, 3720 (2003).ADSCrossRefGoogle Scholar
  100. 100.
    N.P. Guisinger, M.E. Greene, R. Basu, A.S. Baluch, M.C. Hersam: Room temperature negative differential resistance through individual organic molecules on silicon surfaces, Nano Lett., 4, 55 (2004).ADSCrossRefGoogle Scholar
  101. 101.
    X.P. Cao, R.J. Hamers: Silicon surfaces as electron acceptors: Dative bounding of amines with Si(001) and Si(111) surfaces, J. Am Chem Soc 123, 10988 (2001); S.N. Patitsas et al.: Current-induced organic-silicon bond breaking: Consequences for molecular devices, Surf. Sci. 457, L425 (2000)CrossRefGoogle Scholar
  102. 102.
    J.G. Kushmerick, et al.: Understanding charge transport in molecular electronics, Ann. NY Acad. Sci. 1006, 277 (2003)ADSCrossRefGoogle Scholar
  103. 103.
    X.D. Cui, et al.: Reproducible measurement of single-molecule conductivity, Science, 294, 571(2001).ADSCrossRefGoogle Scholar
  104. 104.
    B. Mantooth, et al.: Cross-correlation image tracking for adsorbate analysis and drift correction, Rev. Sci. Inst., 73, 313 (2002).ADSCrossRefGoogle Scholar
  105. 105.
    R.P. Andres, et al.: “Coulomb staircase” at room temperature in a self-assembled molecular nanostructure, Science 272, 1323 (1996); A. Dhirani, et al.: Self-assembled molecular rectifiers, J. Chem. Phys. 106, 5249 (1997); R. McCreery, et al.: Molecular rectification and conductance swithing in carbon-based molecular junctions by structural rearrangement accompanying electron injection, J. Am. Chem. Soc. 125, 10748 (2003); D.J. Wold, et al.: Distance dependence of electron tunneling through aelf-assembled monolayers measured by conducting probe atomic force microscopy: Unsaturated versus saturated molecular junctions, J. Phys. Chem. B, 106, 2813 (2002)ADSCrossRefGoogle Scholar
  106. 106.
    C. Lin, and C.R. Kagan: Layer-by-layer growth of metal-metal bonded supramolecular thin films and its use in the fabrication of lateral nanoscale devices, J. Am. Chem. Soc., 125, 336 (2003).CrossRefGoogle Scholar
  107. 107.
    Y. Selzer, et al.: Temperature effects on conduction through a molecular junction, Nanotechnology, 15, S483 (2004).ADSCrossRefGoogle Scholar
  108. 108.
    H. Basch, and M.A. Ratner, unpublished.Google Scholar
  109. 109.
    G. Poirier: Characterization of organosulfur molecular monolayers on Au(111) using scanning tunneling microscopy, Chem. Revs., 97, 1117 (1997).CrossRefGoogle Scholar
  110. 110.
    S. Liu, R. Maoz, J. Sagiv: Planned nanostructures of colloidal gold via self-assemply on hierarchically assembled organic bilayer template patterns with in-situ generated terminal amino functionality, Nano Lett., 4, 845 (2004).ADSCrossRefGoogle Scholar
  111. 111.
    X.Y. Xiao, B.Q. Xu, N.J. Tao: Measurement of single molecule conductance: Benzenedithiol and benzenedimethanethiol; Nano Lett., 4, 267 (2004).ADSCrossRefGoogle Scholar
  112. 112.
    W. Wang, T. Lee, and M.A. Reed: Mechanism of electron conduction in self-assembled alkanethiol monolayer devices, Phys. Rev. B, 68, 035416 (2003).ADSCrossRefGoogle Scholar
  113. 113.
    J.W. Gadzuk and E.W. Plummer: Field emission energy distribution (FEED), Revs. Mod. Phys., 45, 487 (1973).ADSCrossRefGoogle Scholar
  114. 114.
    G.G. Fagas, A. Kambili and M. Elstner: Complex band structure: A method to determine the off-resonant electron transport in oligomers, Chem. Phys. Lett., 389, 268 ( 2004); V. Mujica, and M.A. Ratner: Current-voltage characteristics of tunneling molecular junctions for off-resonance injection, Chem. Phys., 264, 395 (2002).ADSCrossRefGoogle Scholar
  115. 115.
    W. Wang, T. Lee, and M.A. Reed: Intrinsic molecular electronic transport: Mechanisms and mehtods, J. Phys. Chem. B, in press.Google Scholar
  116. 116.
    C.C. Kaun, H. Guo: Resistance of alkanethiol molecular wires, Nano Lett., 3, 1521 (2003).ADSCrossRefGoogle Scholar
  117. 117.
    H. Basch, and M.A. Ratner: Binding at molecule/gold transport interfaces. V. Comparison of different metals and molecular bridges, submitted to J. Chem. Phys. Google Scholar
  118. 118.
    A. Salomon, et al.: Comparison of electronic transport measurements on organic molecules, Adv. Mat. 15, 1881 (2003)CrossRefGoogle Scholar
  119. 119.
    P.E. Kornilovitch, A.M. Bratkovsky, and R. S. Williams: Bistable molecular conductors with a field-switchable dipole group, Phys. Rev. B, 66, 245413 (2002).ADSCrossRefGoogle Scholar
  120. 120.
    E.G. Emberly, and G. Kirczenow: The smallest molecular switch, Phys. Rev. Lett., 91, 188301 (2003).ADSCrossRefGoogle Scholar
  121. 121.
    A. Troisi, M.A. Ratner: Conformational molecular rectifiers, Nano Lett., 4, 591 (2004).ADSCrossRefGoogle Scholar
  122. 122.
    T. Rakshit, G.C. Liang, A. Ghosh, S. Datta: Silicon based molecular electronics, cond-mat/0305695 (2003), submitted to Phys. Rev. Lett.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Joshua Jortner
    • 1
  • Abraham Nitzan
    • 1
  • Mark A. Ratner
    • 2
  1. 1.School of ChemistryTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Chemistry and Institute for NanotechnologysNorthwestern UniversityEvanstonU.S.A.

Personalised recommendations