Advertisement

Rotational Motions in Seismology: Theory, Observation, Simulation

  • Alain Cochard
  • H. Igel
  • B. Schuberth
  • W. Suryanto
  • A. Velikoseltsev
  • U. Schreiber
  • J. Wassermann
  • F. Scherbaum
  • D. Vollmer

Keywords

Ground Motion Rotation Rate Bull Seism Ring Laser Seismic Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki K, Richards PG (1980) Quantitative seismology: theory and methods. W.H. Freeman and Company, San Francisco, CAGoogle Scholar
  2. Aki K, Richards PG (2002) Quantitative seismology. University Science Books, 2nd ed, Sausalito, CAGoogle Scholar
  3. Bodin P, Gomberg J, Sing SK, Santoyo M (1997) Dynamic deformations of shallow sediments in the valley of Mexico. Part I. Three-dimensional strains and rotations recorded on a seismic array. Bull Seism Soc Am 87: 528–539Google Scholar
  4. Bouchon M, Aki K (1982) Strain, tilt, and rotation associated with strong ground motion in the vicinity of earthquake faults. Bull Seism Soc Am 72: 1717–1738Google Scholar
  5. Castellani A, Zembaty Z (1996) Comparison between earthquake spectra obtained by different experimental sources. Engng Struct 18: 597–603CrossRefGoogle Scholar
  6. Cook RD (1974) Concepts and applications of finite element analysis. John Wiley & Sons, New YorkGoogle Scholar
  7. Dyszlewicz J (2004) Micropolar theory of elasticity. Springer, Berlin-New YorkGoogle Scholar
  8. Galitzin F (1914) Vorlesungen über Seismometrie. BG Teubner, Leipzig-Berlin (in German)Google Scholar
  9. Huang B-S (2003) Ground rotational motions of the 1999 Chi-Chi, Taiwan earthquake as inferred from dense array observations. Geophys Res Lett 30: 1307–1310, doi:10.1029/2002GL015157CrossRefGoogle Scholar
  10. Igel H, Flaws A, Cochard A, Wassermann J, Schreiber U, Velikoseltsev A (2005a) Rotational and translational motions induced by local, regional and global seismic events. I. Observations and processing (in preparation)Google Scholar
  11. Igel H, Schreiber U, Flaws A, Schuberth B, Velikoseltsev A, Cochard A (2005b) Rotational motions induced by the M8.1 Tokachi-oki earthquake, September 25, 2003. Geophys Res Lett 32: L08309, doi:10.1029/2004GL022336CrossRefGoogle Scholar
  12. Ji C (2004) URL http://www.gps.caltech.edu/~jichenGoogle Scholar
  13. Ji C, Wald DJ, Helmberger DV (2002) Source description of the 1999 Hector mine, California earthquake. Part I. Bull Seism Soc Am 92:4, 1192–1207CrossRefGoogle Scholar
  14. Komatitsch D (1997) Méthodes spectrales et éléments spectraux pour l’équation de l’élastodynamique 2D et 3D en milieu hétérogène (Spectral and spectral-element methods for the 2D and 3D elastodynamics equations in heterogeneous media). PhD thesis, Institut de Physique du Globe, Paris, FranceGoogle Scholar
  15. Komatitsch D, Tromp J (2002a) Spectral-element simulations of global seismic wave propagation — I. Validation. Geophys J Int 149: 390–412CrossRefGoogle Scholar
  16. Komatitsch D, Tromp J (2002b) Spectral-element simulations of global seismic wave propagation — II. 3-D models, oceans, rotation, and self-gravitation. Geophys J Int 150: 303–318CrossRefGoogle Scholar
  17. Komatitsch D, Tsuboi S, Ji C, Tromp J (2003) A 14.6 billion degrees of freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator. Proc. ACM/IEEE Supercomputing SC’2003 conference. Published on CD-ROM and at www.sc-conference.org/sc2003Google Scholar
  18. Lakes RS (1995) Experimental methods for study of Cosserat elastic solids and other generalized continua. In: Mühlhaus HB (ed) Continuum models for materials with microstructure, Chap 1, pp 1–22. John Wiley & Sons, LondonGoogle Scholar
  19. Maugin GA (1998) On the structure of the theory of polar elasticity. Phil Trans R Soc 356: 1367–1395CrossRefGoogle Scholar
  20. McLeod DP, Stedman GE, Webb TH, Schreiber U (1998) Comparison of standard and ring laser rotational seismograms. Bull Seism Soc Am 88: 1495–1503Google Scholar
  21. Nigbor RL (1994) Six-degree-of-freedom ground-motion measurement. Bull Seism Soc Am 84: 1665–1669Google Scholar
  22. Nowacki W (1986) Theory of asymmetric elasticity. Pergamon Press—Oxford and PWN—WarszawaGoogle Scholar
  23. Pancha A, Webb TH, Stedman GE, McLeod DP, Schreiber KU (2000) Ring laser detection of rotations from teleseismic waves. Geophys Res Lett 27: 3553–3556CrossRefGoogle Scholar
  24. Schreiber KU, Klügel T, Stedman GE (2003a) Earth tide and tilt detection by a ring laser gyroscope. J Geophys Res 108: 21–32, 10.1029/2001JB000569CrossRefGoogle Scholar
  25. Schreiber KU, Velikoseltsev A, Igel H, Cochard A, Flaws A, Drewitz W, Muller F (2003b) The GEOsensor: A new instrument for seismology. In: GEO-TECHNOLOGIEN Science Report No. 3: Observation of the System Earth from Space, Status Seminar, Programme and Abstracts. Munich, 12–13 June, Bavarian State Mapping Agency (BLVA)Google Scholar
  26. Schreiber KU, Velikoseltsev A, Stedman GE, Hurst RB, Klugel T (2003c) New applications of very large ring lasers. In: Sorg H (ed) Symposium Gyro Technology, pp 8.0–8.7Google Scholar
  27. Schreiber KU, Velikoseltsev A, Rothacher M, Klügel T, Stedman GE, Wiltshire DL (2004) Direct measurement of diurnal polar motion by ring laser gyroscopes. J Geophys Res 109: B06405CrossRefGoogle Scholar
  28. Schuberth B, Ewald M, Igel H, Treml M, Wang H, Brietzke G (2005). Computational seismology: narrowing the gap between theory and observations. In: Bode A, Durst F (eds) High performance computing in science and engineering — Garching 2004. Springer, Heidelberg, pp 251–262Google Scholar
  29. Spudich P, Steck LK, Hellweg M, Fletcher JB, Baker LM (1995) Transient stresses at Park-field, California, produced by the m 7.4 Landers earthquake of June 28, 1992: Observations from the UPSAR dense seismograph array. J Geophys Res 100: 675–690CrossRefGoogle Scholar
  30. Stedman GE (1997) Ring laser tests of fundamental physics and geophysics. Reports Progr Phys 60: 615–688CrossRefGoogle Scholar
  31. Stedman GE, Li Z, Bilger HR (1995) Sideband analysis and seismic detection in a large ring laser. Appl Opt 34: 7390–7396CrossRefGoogle Scholar
  32. Suryanto W, Igel H, Wassermann J, Cochard A, Schubert B, Vollmer D, Scherbaum F (2005) Comparison of seismic array-derived rotational motions with direct ring laser measurements. Bull Seismol Soc Am (submitted)Google Scholar
  33. Takeo M (1998) Ground rotational motions recorded in near-source region of earthquakes. Geophys Res Lett 25: 789–792CrossRefGoogle Scholar
  34. Takeo M, Ito HM (1997) What can be learned from rotational motions excited by earthquakes. Geophys J Int 129: 319–329Google Scholar
  35. Teisseyre R, Majewski E (2001) Earthquake thermodynamics and phase transformation in the earth’s interior. Academic Press, San DiegoGoogle Scholar
  36. Teisseyre R, Suchcicki J, Teisseyre KP, Wiszniowski J, Palangio P (2003) Seismic rotation waves: basic elements of theory and recording. Annali di Geofisica 46: 671–685Google Scholar
  37. Trifunac MD, Todorovska MI (2001) A note on the useable dynamic range of accelerographs recording translation. Soil Dyn and Earth Eng 21: 275–286CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alain Cochard
    • 1
  • H. Igel
    • 1
  • B. Schuberth
    • 1
  • W. Suryanto
    • 1
  • A. Velikoseltsev
    • 2
  • U. Schreiber
    • 2
  • J. Wassermann
    • 1
  • F. Scherbaum
    • 3
  • D. Vollmer
    • 3
  1. 1.Department of Earth and Environmental SciencesLudwig-Maximilians-UniversitätMünchenGermany
  2. 2.Forschungseinrichtung SatellitengeodäsieTechnical University of Munich, Fundamentalstation WettzellKötztingGermany
  3. 3.Institut für GeowissenschaftenUniversität PotsdamGolmGermany

Personalised recommendations