Modeling Regeneration in Even and Uneven-Aged Mixed Species Forests

  • Hubert Hasenauer
  • Georg Kindermann

Abstract

Regeneration establishment and juvenile tree height growth are important to ensure sustainability within forest stands. In this chapter, we demonstrate how routine inventory data may be used to assess the probability of regeneration within the last 5 years, the species composition and the regeneration density within pure and mixed as well as even and uneven-aged forests. We also propose an approach for predicting juvenile tree height growth and mortality. Finally, we demonstrate the applicability of our regeneration models using independent data sets, which were not used for model calibration. The results of the study suggest that our regeneration assessment routines and the height growth predictions were unbiased and exhibited consistent results. The equations are simple and require only routine inventory data and can be easily adapted to any other forest type if regeneration data are available.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bella IE (1971) A new competition model for individual trees. For Sci 17:364–372Google Scholar
  2. Biging GS, Dobbertin M (1995) Evaluation of competition indices in individual tree growth models. For Sci 41:360–377Google Scholar
  3. Bitterlich W (1959) Relaskoptechnik rationelle Waldmessung durch Spiegelrelaskop. Centralbl f ges Forstw 79:1–35Google Scholar
  4. Chazdon RL (1988) Sunflecks and their importance to forest understory plants. Advance in ecological research, vol 18. Academic Press, New York, pp 2–63Google Scholar
  5. Canham CD, Platt WJ, Runkle JR, Spies TA, White PS (1990) Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can J For Res 20:620–631Google Scholar
  6. Cuthbertson K, Hall SG, Taylor MP (1992) Applied econometric techniques. Allan, New York, 274 ppGoogle Scholar
  7. Eckmüllner O, Katzensteiner K, Koch G, Reimoser F (1999) Naturrauminventur Nationalpark Kalkalpen, Inventurschlüssel. Institut für Waldwachstumsforschung, Universität für Bodenkultur, Wien, 49 ppGoogle Scholar
  8. Ek AR, Monserud RA (1974) FOREST: a computer model for simulating the growth and reproduction of mixed species forest stands. Res Rep R2635. College of Agriculture and Life Sciences, University of Wisconsin-Madison, 90 ppGoogle Scholar
  9. FBVA (1994) Instruktionen für die Feldarbeit der Österreichischen Forstinventur. Forstliche Bundesversuchsanstalt Wien, 194 ppGoogle Scholar
  10. Flemming G (1962) Strahlung und Wind an Bestandesrändern. Arch Forstwesen 11, 647 ppGoogle Scholar
  11. Gasch J (1995) Stichprobeninventur und Naturverjüngung. In: Sagl W (ed) Forsteinrichtung auf dem Prüfstand. Schriftenreihe des Institutes für forstliche Betriebswirtschaft und Forstwirtschaftspolitik, vol 26. Universität für Bodenkultur, Wien, pp 95–105Google Scholar
  12. Golser M, Hasenauer H (1997) Predicting juvenile tree height growth in uneven-aged mixed species stands in Austria. For Ecol Manage 97:133–146CrossRefGoogle Scholar
  13. Hasenauer H (1994) Ein Einzelbaumwachstumssimulator für ungleichaltrige Fichten-Kiefern-und Buchen-Fichtenmischbestände. Forstliche Schriftenreihe. Österreichische Gesellschaft für Waldökosystemforschung und experimentelle Baumforschung. Universität für Bodenkultur, Wien, 152 ppGoogle Scholar
  14. Hasenauer H (1997) Dimensional relationships of open-grown trees in Austria. For Ecol Manage 96:197–206CrossRefGoogle Scholar
  15. Hasenauer H, Kindermann G (2002) Methods for assessing regeneration establishment and height growth in uneven-aged mixed species stands. J For 75:386–394Google Scholar
  16. Hasenauer H, Kindermann G, Merkl D (2000) Zur Schätzung der Verjüngungssituation in Mischbeständen mit Hilfe Neuraler Netze. Forstwiss Centralbl 119:350–366Google Scholar
  17. Hett JM (1971) A dynamic analysis of age in sugar maple seedlings. Ecology 52:1071–1074Google Scholar
  18. Huss J (1993) Waldbau vor neuen Herausforderungen bei der Waldverjüngung und Jungbestandspflege. Forstw Centralbl 112:278–286Google Scholar
  19. Kennel R (1972) Die Buchendurchforstungsversuche in Bayern von 1870 bis 1970. Publ 7. Institut für Ertragskunde der Forstlichen Forschungsanstalt, München, 264 ppGoogle Scholar
  20. Kindermann G (2004) Modellieung des Wachstums von Mischbeständen. PhD Thesis. University of Natural Resources and Applied Life Sciences, ViennaGoogle Scholar
  21. Kindermann G, Hasenauer H, Gasch J (2002) Ankommen und Wachstum von Naturverjüngung in Mischbeständen. Centralbl Ges Forstwesen 119:159–186Google Scholar
  22. Kokoska S, Nevison C (1989) Statistical tables. Springer, Berlin Heidelberg New York, 88 ppGoogle Scholar
  23. Krajicek JE, Brinkman KA, Gingrich SF (1961) Crown competition: a measure of stand density. For Sci 7:35–42Google Scholar
  24. Leak WB, Graber RE (1976) Seedling input, death and growth in uneven-aged northern hardwoods. Can J For Res 6:368–374Google Scholar
  25. Ledermann T (2002) Ein Einwuchsmodell aus den Daten der Österreichischen Waldinventur 1981–1996. Centralbl f ges Forstwesen 119:40–77Google Scholar
  26. Marschall J (1975) Hilfstafeln für die Forsteinrichtung. Österr Agrarverlag, Wien, 199 ppGoogle Scholar
  27. Mitchell KJ (1975) Dynamics and simulated yield of Douglas-fir. For Sci Monogr 17, 39 ppGoogle Scholar
  28. Monserud RA, Sterba H (1996) A basal area increment model for individual trees growing in even-and uneven-aged forest stands in Austria. For Ecol Manage 80:57–80CrossRefGoogle Scholar
  29. Moser JW (1972) Dynamics of an uneven-aged forest stand. For Sci 18:184–191Google Scholar
  30. Posch B (2003) Jungwuchs-und Schälmonitoring. Österr Forstztg 114:16–17Google Scholar
  31. Pukkala T, Kolström T (1992) A stochastic spatial regeneration model for Pinus silvestris. Scand J For Res 7:377–385Google Scholar
  32. Reynolds MR (1984) Estimating the error in model predictions. For Sci 30:454–469Google Scholar
  33. Ribbens E, Silander JA Jr, Pacala SW (1994) Seedling recruitment in forests: calibrating models to predict patterns of tree seedling dispersion. Ecology 75(6):1794–1806Google Scholar
  34. Schweiger J, Sterba H (1997) A model describing natural regeneration recruitment of Norway spruce (Picea abies L) in Austria. For Ecol Manage 97:107–118CrossRefGoogle Scholar
  35. Shifley SR, Ek AR, Burk TE (1993) A generalized methodology for estimating forest ingrowth at multiple threshold diameters. For Sci 39:776–798Google Scholar
  36. Shugart HH, Crow RR, Hett JM (1973) Forest succession models: a rationale and methodology for modeling forest succession over large regions. For Sci 19:203–212Google Scholar
  37. Solomon DS, Herman DA, Leak EB (1995) FIBER 3.0: an ecological growth model for northeastern forest types. GTR NE-204. USDA Forest Service, Ogden, Utah, 24 ppGoogle Scholar
  38. Wildt R (1995) Operationalität eines Verjüngungsaufnahmeverfahrens. Dipl Arbeit, Universität für Bodenkultur, Wien, 97 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hubert Hasenauer
  • Georg Kindermann
    • 1
  1. 1.Department of Forest and Soil Sciences, Institute of Forest Growth ResearchBOKU University of Natural Resources and Applied Life Sciences, ViennaViennaAustria

Personalised recommendations