Advertisement

Molecular Aspects of Allergic Contact Dermatitis

  • Jean-Pierre Lepoittevin

Keywords

Contact Dermatitis Allergic Contact Dermatitis Triamcinolone Acetonide Molecular Aspect Skin Sensitization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading

  1. Dupuis G, Benezra C (1982) Allergic contact dermatitis to simple chemicals. Dekker, New YorkGoogle Scholar
  2. Lepoittevin JP, Basketter DA, Goossens A, Karlberg AT (eds) (1997) Allergic contact dermatitis: the molecular basis. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. Smith CK, Hotchkiss SAM (2001) Allergic contact dermatitis: Chemical and metabolic mechanisms. Taylor and Francis, LondonGoogle Scholar

References

  1. 1.
    Baer H, Watkins RC, Kurtz AP, Byck JS, Dawson CR (1967) Delayed contact sensitivity to catechols. J Immunol 99:307–375Google Scholar
  2. 2.
    Corbett MD, Billets S (1975) Characterization of poison oak urushiol. J Pharm Sci 64:1715PubMedGoogle Scholar
  3. 3.
    Landsteiner K, Jacobs J (1936) Studies on the sensitization of animals with simple chemical compounds. J Exp Med 64:625–639CrossRefPubMedGoogle Scholar
  4. 4.
    Lepoittevin JP, Berl V (1997) Chemical basis. In: Lepoittevin JP, Basketter DA, Goossens A, Karlberg AT (eds) Allergic contact dermatitis: the molecular basis. Springer, Berlin Heidelberg New York, pp 19–42Google Scholar
  5. 5.
    Lepoittevin J-P, Benezra C (1992) 13C-Enriched methylalkanesulfonates: new lipophilic methylating agents for the identification of nucleophilic amino acids of protein by NMR. Tetrahedron Lett 33:3875–3878CrossRefGoogle Scholar
  6. 6.
    Franot C, Benezra C, Lepoittevin J-P (1993) Synthesis and interaction studies of 13C labeled lactone derivatives with a model protein using 13C NMR. Biorg Med Chem 1:389–397CrossRefGoogle Scholar
  7. 7.
    Ritz HL, Connor DS, Sauter ED (1975) Contact sensitization of guinea-pigs with unsaturated and halogenated sultones. Contact Dermatitis 1:349–358PubMedCrossRefGoogle Scholar
  8. 8.
    Goodwin BFJ, Roberts DW, Williams DL, Johnson AW (1983) Relationships between skin sensitization potential of saturated and unsaturated sultones. In: Gibson GG, Hubbard R, Parke DV (eds) Immunotoxicology. Academic, London, pp 443–448Google Scholar
  9. 9.
    Magnusson B, Gilje O (1973) Allergic contact dermatitis from dishwashing liquid containing lauryl ether sulfate. Acta Derm Venereol (Stockh) 53:136–140PubMedGoogle Scholar
  10. 10.
    Meschkat E, Barratt M, Lepoittevin JP (2001) Studies of chemical selectivity of hapten, reactivity and skin sensitization potency. Synthesis and studies on the reactivity towards model nucleophiles of the 13C-labeled skin sensitizers, hex-1-ene-and hexane-1,3 sultones. Chem Res Toxicol 14:110–117PubMedCrossRefGoogle Scholar
  11. 11.
    Meschkat E, Barratt M, Lepoittevin JP (2001) Studies of chemical selectivity of hapten, reactivity and skin sensitization potency. NMR studies of the covalent binding of the 13C-labeled skin sensitizers, 2-[13C] and 3-[13C]-hex-1-eneand 3-[13C]-hexane-1,3-sultones to human serum albumin. Chem Res Toxicol 14:118–126PubMedCrossRefGoogle Scholar
  12. 12.
    Alvarez-Sanchez R, Basketter D, Pease C, Lepoittevin JP (2003) Studies of chemical selectivity of hapten, reactivity and skin sensitization potency. 3. Synthesis and studies on the reactivity towards model nucleophiles of the 13C-labeled skin sensitizers, 5-chloro-2-methylisothiazol-3-one (MCI) and 2-methylisothiazol-3-one (MI). Chem Res Toxicol 16:627–636PubMedGoogle Scholar
  13. 13.
    Alvarez-Sanchez R, Basketter DA, Pease C, Lepoittevin JP (2004) Covalent binding of the 13C-labeled skin sensitizers 5-chloro-2-methylisothiazol-3-one (MCI) and 2-methylisothiazol-3-one (MI) to a model peptide and glutathione. Bioorg Med Chem Lett 14:365–368PubMedCrossRefGoogle Scholar
  14. 14.
    Alvarez-Sanchez R, Divkovic M, Basketter D, Pease C, Panico M, Dell A, Morris H, Lepoittevin JP (2004) Effect of glutathione on the covalent binding of the 13C-labeled skin sensitizer 5-chloro-2-methylisothiazol-3-one (MCI) to human serum albumin: identification of adducts by NMR, MALDI-MS and nano-ES MS/MS. Chem Res Toxicol 17(9):1280–1288PubMedCrossRefGoogle Scholar
  15. 15.
    Romagnoli P, Labahrdt AM, Sinigaglia F (1991) Selective interaction of nickel with an MHC bound peptide. EMBO J 10:1303–1306PubMedGoogle Scholar
  16. 16.
    Schmidt R, Kahn L, Chung LY (1990) Are free radicals and quinones the haptenic species derived from urushiols and other contact allergenic mono-and dihydric alkyl-benzenes? The significance of NADH, glutathione and redox cuycling in the skin. Arch Dermatol Res 282:56–64PubMedCrossRefGoogle Scholar
  17. 17.
    Barratt MD, Basketter DA (1992) Possible origin of the skin sensitization potential of eugenol and related compounds. Contact Dermatitis 27:98–104PubMedCrossRefGoogle Scholar
  18. 18.
    Gäfvert E, Shao LP, Karlberg A-T, Nilsson U, Nilsson JLG (1994) Contact allergy to resin acid hydroperoxides. Hapten binding via free readicals and epoxides. Chem Res Toxicol 7:260–266PubMedCrossRefGoogle Scholar
  19. 19.
    Mutterer V, Gimenez-Arnau E, Karlberg AT, Lepoittevin JP (2000) Synthesis and allergenic potential of a 15-hydroperoxyabietic acid-like model: trapping of radical intermediates. Chem Res Toxicol 13:1028–1036CrossRefGoogle Scholar
  20. 20.
    Gimńez-Arnau E, Haberkorn L, Grossi L, Lepoittevin JP (2002) Identification of alkyl radicals derived from an allergenic cyclic tertiary allylic hydroperoxide by combined use of radical trapping and ESR studies. Tetrahedron 58:5535–5545CrossRefGoogle Scholar
  21. 21.
    Bertrand F, Basketter DA, Roberts DW, Lepoittevin J-P (1997) Skin sensitization to eugenol and isoeugenol in mice: possible metabolic pathways involving ortho-quinone and quinone methide intermediates. Chem Res Toxicol 10:335–343PubMedCrossRefGoogle Scholar
  22. 22.
    Merk HF (1997) Skin metabolism. In: Lepoittevin JP, Basketter DA, Goossens A, Karlberg AT (eds) Allergic contact dermatitis: the molecular basis. Springer, Berlin Heidelberg New York, pp 68–80Google Scholar
  23. 23.
    Dupuis G (1979) Studies of poison ivy. In vitro lymphocytes transformation by urushiol protein conjugates. Br J Dermatol 101:617–624PubMedGoogle Scholar
  24. 24.
    Reynolds G, Rodriguez E (1981) Prenylated hydroquinones: contact allergens from trichomes of Phacelia minor and P. parryi. Phytochemistry 20:1365–1366CrossRefGoogle Scholar
  25. 25.
    Bergmann HH, Beijersbergen JCH, Overeem JC, Sijpesteijn AK (1967) Isolation and identification of α-methylene-γ-butyrolactone: a fungitoxic substance from tulips. Recueil Travaux Chim Pays-Bas 86:709–71Google Scholar
  26. 26.
    Landsteiner K, Jacobs JL (1936) Studies on the sensitization of animals with simple chemicals. J Exp Med 64:625–639CrossRefPubMedGoogle Scholar
  27. 27.
    Dupuis G, Benezra C (1982) Allergic contact dermatitis to simple chemicals. Dekker, New YorkGoogle Scholar
  28. 28.
    Hellerström S, Thyresson N, Blohm SG, Widmark G (1955) On the nature of eczematogenic component of oxidized Δ3-carene. J Invest Dermatol 24:217–22PubMedCrossRefGoogle Scholar
  29. 29.
    Karlberg AT (1988) Contact allergy to colophony. Chemical identification of allergens. Sensitization experiments and clinical experiments. Acta Fermato Venereol 68[Suppl 139]:1–43Google Scholar
  30. 30.
    Karlberg AT, Shao L.P, Nilsson U, Gäfvert E, Nilsson JLG (1994) Hydroperoxides in oxidized d-limonene identified as potent contact allergens. Arch Dermatol Res 286:97–103PubMedCrossRefGoogle Scholar
  31. 31.
    Stampf JL, Benezra C, Klecak G, Geleick H, Schulz KH, Hausen B (1982) The sensitization capacity of helenin and two of its main constituents, the sesquiterpene lactones, alantolactones and isoalantolactone. Contact Dermatitis 8:16–24PubMedCrossRefGoogle Scholar
  32. 32.
    Baer RL (1954) Cross-sensitization phenomena. In: Mackenna MB (ed) Modern trends in dermatology. Butterworth, London, pp 232–258Google Scholar
  33. 33.
    Benezra C, Maibach H (1984) True cross-sensitization, false cross-sensitization and otherwise. Contact Dermatitis 11:65–69PubMedCrossRefGoogle Scholar
  34. 34.
    Cohen NC, Blaney JM, Humblet C, Gund P, Barry DC (1990) Molecular modeling software and methods for medicinal chemistry. J Med Chem 33:883–984.PubMedCrossRefGoogle Scholar
  35. 35.
    Coopman S, Degreef H, Dooms-Goossens A (1989) Identification of cross-reaction patterns in allergic contact dermatitis from topical corticosteroids. Br J Dermatol 121:27–34PubMedGoogle Scholar
  36. 36.
    Lepoittevin JP, Drieghe J, Dooms-Goossens A (1995) Studies in patients with corticosteroid contact allergy: understanding cross-reactivity among different steroids. Arch Dermatol 131:31–37PubMedCrossRefGoogle Scholar
  37. 37.
    Barratt MD, Basketter DA, Chamberlain M, Admans GD, Langowski JJ (1994) An expert system rulebase for identifying contact allergens. Toxic In Vitro 8:1053–1060CrossRefGoogle Scholar
  38. 38.
    Mutterer V, Giménez Arnau E, Lepoittevin J-P, Johansen JD, Frosch PJ, Menné T, Andersen KE, Bruze M, Rastogi SC, White IR (1999) Identification of coumarin as the sensitizer in a patient sensitive to her own perfume but negative to the fragrance mix. Contact Dermatitis 40:196–19PubMedGoogle Scholar
  39. 39.
    Giménez Arnau E, Andersen KE, Bruze M, Frosch PJ, Johansen JD, Menné T, Rastogi SC, White IR, Lepoittevin J-P (2000) Identification of Lilialas a fragrance sensitizer in a perfume by bioassay-guided chemical fractionation and structure-activity relationships. Contact Dermatitis 43:351–35CrossRefGoogle Scholar
  40. 40.
    Bernard G, Giménez-Arnau, Rastogi SC, Heydorn S, Duus Johansen J, Menné T, Goossens A, Andersen KE, Lepoittevin JP (2003) Contact allergy to oak moss: search for sensitizing molecules using combined bioassay-guided fractionation, GC-MS and structure-activity relationship analysis, part 1. Arch Dermatol Res 295:229–23PubMedCrossRefGoogle Scholar
  41. 41.
    Johansen JD, Andersen KE, Svedman C, Bruze M, Bernard G, Giménez-Arnau E, Rastogi SC, Lepoittevin JP, Menné T (2003) Chloroatranol an extremely potent allergen hidden in perfumes — a dose-response elicitation study. Contact Dermatitis 49:180–18PubMedCrossRefGoogle Scholar
  42. 42.
    Roberts DW, Williams DL (1982) The derivation of quantitative correlations between skin sensitisation and physicochemical parameters for alkylating agents and their application to experimental data for sultones. J Theor Biol 99:807–825PubMedCrossRefGoogle Scholar
  43. 43.
    Fraginals R, Roberts DW, Lepoittevin J-P, Benezra C (1991) Refinement of the relative alkylation index (RAI) model for skin sensitization and application to mouse and guinea-pig test data for alkylsulfonates. Arch Dermatol Res 283:387–394PubMedCrossRefGoogle Scholar
  44. 44.
    Franot C, Roberts DW, Basketter DA, Benezra C, Lepoittevin J-P (1994) Structure-activity relationships for contact allergenic potential of γ,γ-dimethyl-γ-butyrolactone derivatives, part II. Chem Res Toxicol 7:307–312PubMedCrossRefGoogle Scholar
  45. 45.
    Roberts DW, Basketter DA (1997) Further evaluation of the quantitative structure-activity relationship for skin-sensitizing alkyl transfer agents. Contact Dermatitis 37:107–112PubMedCrossRefGoogle Scholar
  46. 46.
    Roberts DW, Basketter DA (2000) Quantitative structure-activity relationships: sulfonate esters in the local lymph node assay. Contact Dermatitis 42:154–161PubMedCrossRefGoogle Scholar
  47. 47.
    Basketter DA, Gerberick GF, Kimber I, Loveless SE (1996) The local lymph node assay: a viable alternative to currently accepted skin sensitization tests. Food Chem Toxicol 34:985–997PubMedCrossRefGoogle Scholar
  48. 48.
    Basketter DA, Lea LJ, Dickens A et al (1999) A comparison of statistical approaches to the derivation of EC3 values from local lymph node assay dose-response. J Appl Toxicol 19:261–266PubMedCrossRefGoogle Scholar
  49. 49.
    Perrin DD, Dempsey B, Serjeant EP (1981) pKa prediction for organic acids and bases. London, Chapman and Hall, pp 109–126Google Scholar
  50. 50.
    Patlewicz GY, Wright ZM, Basketter DA, Pease CK, Lepoittevin JP, Gimenez-Arnau E (2002) Structure-activity relationships for selected fragrance allergens. Contact Dermatitis 47:219–226PubMedCrossRefGoogle Scholar
  51. 51.
    Barbier A, Rizova E, Stampf J-L, Lacheretz F, Pistor FHM, Bos JD, Kapsenberg ML, Becker D, Mohamadzadeh M, Knop J, Mabic S, Lepoittevin J-P (1994) Development of a predictive in vitro test for detection of sensitizing compounds (European BRIDGE project). In: Rougier A, Goldberg AM, Maibach HI (eds) In vitro skin toxicology (irritation, phototoxicity, sensitization). Liebert, New York, pp 341–350Google Scholar
  52. 52.
    Gerberick F, Vassallo J, Bailey R, Morrall S, Lepoittevin J-P (2004) Development of peptide reactivity assay for screening allergens. Toxicol Sci 81:332–343PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jean-Pierre Lepoittevin
    • 1
  1. 1.Laboratoire de Dermato-Chimie Clinique DermatologiqueCHUStrasbourg CedexFrance

Personalised recommendations