MinT: A Database for Optimal Net Parameters

  • Rudolf Schürer
  • Wolfgang Ch. Schmid


An overwhelming variety of different constructions for (t, m, s)-nets and (t, s)-sequences are known today. Propagation rules as well as connections to other mathematical objects make it a difficult task to determine the best net available in a given setting.

We present the web-based database system MinT for querying best known (t, m, s)-net and (t, s)-sequence parameters. This new system provides a number of hitherto unavailable services to the research community.


Orthogonal Array Mode Type Linear Code Mathematical Object Generator Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bierbrauer, Y. Edel, and W. Ch. Schmid. Coding-theoretic constructions for (t, m, s)-nets and ordered orthogonal arrays. J. Combin. Designs, 10:403–418, 2002.CrossRefMathSciNetGoogle Scholar
  2. 2.
    R. C. Bose. On some connections between the design of experiments and information theory. Bull. Internat. Statist. Inst., 48:257–271, 1961.Google Scholar
  3. 3.
    A. T. Clayman, K. M. Lawrence, G. L. Mullen, H. Niederreiter, and N. J. A. Sloane. Updated tables of parameters of (t, m, s)-nets. J. Combin. Designs, 7:381–393, 1999.CrossRefMathSciNetGoogle Scholar
  4. 4.
    K. M. Lawrence. A combinatorial characterization of (t, m, s)-nets in base b. J. Combin. Designs, 4:275–293, 1996.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    K. M. Lawrence, A. Mahalanabis, G. L. Mullen, and W. Ch. Schmid. Construction of digital (t, m, s)-nets from linear codes. In S. D. Cohen and H. Niederreiter, editors, Finite Fields and Applications, volume 233 of Lect. Note Series of the London Math. Soc., pages 189–208, Cambridge, UK, 1996. Cambridge University Press.Google Scholar
  6. 6.
    G. L. Mullen, A. Mahalanabis, and H. Niederreiter. Tables of (t, m, s)-net and (t, s)-sequence parameters. In H. Niederreiter and P. J.-S. Shiue, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, volume 106 of Lecture Notes Statistics, pages 58–86. Springer-Verlag, 1995.Google Scholar
  7. 7.
    G. L. Mullen and W. Ch. Schmid. An equivalence between (t, m, s)-nets and strongly orthogonal hypercubes. J. Combin. Theory A, 76:164–174, 1996.CrossRefMathSciNetGoogle Scholar
  8. 8.
    H. Niederreiter. Point sets and sequences with small discrepancy. Monatsh. Math., 104:273–337, 1987.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, volume 63 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1992.Google Scholar
  10. 10.
    H. Niederreiter. Constructions of (t, m, s)-nets. In H. Niederreiter and J. Spanier, editors, Monte Carlo and Quasi-Monte Carlo Methods 1998, pages 70–85. Springer-Verlag, 2000.Google Scholar
  11. 11.
    H. Niederreiter and C. P. Xing. Low-discrepancy sequences and global function fields with many rational places. Finite Fields Appl., 2:241–273, 1996.CrossRefMathSciNetGoogle Scholar
  12. 12.
    H. Niederreiter and C. P. Xing. The algebraic-geometry approach to low-discrepancy sequences. In H. Niederreiter et al., editors, Monte Carlo and Quasi-Monte Carlo Methods 1996, volume 127 of Lecture Notes Statistics, pages 139–160. Springer-Verlag, 1998.Google Scholar
  13. 13.
    A. B. Owen. Orthogonal arrays for computer experiments, integration and visualization. Statist. Sinica, 2:438–452, 1992.MathSciNetGoogle Scholar
  14. 14.
    W. Ch. Schmid and R. Wolf. Bounds for digital nets and sequences. Acta Arith., 78:377–399, 1997.MathSciNetGoogle Scholar
  15. 15.
    S. Tezuka and T. Tokuyama. A note on polynomial arithmetic analogue of Halton sequences. ACM Trans. Modeling and Computer Simulation, 4:279–284, 1994.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rudolf Schürer
    • 1
  • Wolfgang Ch. Schmid
    • 1
  1. 1.Department of MathematicsUniversity of SalzburgSalzburgAustria

Personalised recommendations