Advertisement

Characterization and Modeling of Growth and Remodeling in Tendon and Soft Tissue Constructs

  • E. M. Arruda
  • S. C. Calve
  • K. Garikipati
  • K. Grosh
  • H. Narayanan

5 Conclusions

Separate theories of growth and remodeling have been outlined to illustrate that remodeling may occur at constant mass and is a configurational change whereas growth involves a change in the concentration of species. Engineered tendon constructs were generated for growth and remodeling studies. The constructs demonstrate mechanically responsive cells, grow and remain viable in culture for several weeks. They are excellent in vitro models for growth studies.

Keywords

Collagen Content Nominal Stress Dissipation Inequality Tibialis Anterior Tendon Tendon Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrick, J. J., Mundy, K., Calve, S. C., Arruda, E. M., and Baar, K. (2005). Uniaxial stretch results in increased collagen in fibrin-based 3D engineered tendon. J. Appl. Physiol. submitted.Google Scholar
  2. Arruda, E. M., Mundy, K., Calve, S. C., and Baar, K. (2005). Denervation decreases tendon extensibility and increases tendon stiffness. J. Physiol. submitted.Google Scholar
  3. Bischoff, J. E., Arruda, E. M., and Grosh, K. (2002a). A microstructurally based orthotropic hyperelastic constitutive law. J. Appl. Mech. 69:570–579.CrossRefGoogle Scholar
  4. Bischoff, J. E., Arruda, E. M., and Grosh, K. (2002b). Orthotropic hyperelasticity in terms of an arbitrary molecular chain model. Tissue Eng. 10:755–761.Google Scholar
  5. Calve, S. C., Dennis, R. G., Kosnik II, P. E., Baar, K., and Arruda, E. M. (2004). Engineering of functional tendon. J. Appl. Mech. 69:199–201.Google Scholar
  6. Epstein, M., and Maugin, G. A. (2000). Thermomechanics of volumetric growth in uniform bodies. Int. J. Plasticity 16:951–978.CrossRefGoogle Scholar
  7. Garikipati, K., Arruda, E. M., Grosh, K., Narayanan, H., and Calve, S. C. (2004). A continuum treatment of growth in biological tissue: The coupling of mass transport and mechanics. J. Mech. Phys. Solids 52:1595–1625.MathSciNetCrossRefGoogle Scholar
  8. Garikipati, K., Narayanan, H., Arruda, E. M., Grosh, K., and Calve, S. C. (2005). Material forces in the context of biotissue remodelling. In Steinmann, P., and Maugin, G. A., eds., Mechanics of Material Forces. Dordrecht: Kluwer Academic Publishers. E-print available at http://arXiv.org/abs/q-bio.QM/0312002.Google Scholar
  9. Humphrey, J. D., and Rajagopal, K. R. (2002). A constrained mixture model for growth and remodeling of soft tissues. Math. Model. Meth. Appl. Sci. 12:407–430.MathSciNetCrossRefGoogle Scholar
  10. Klisch, S. M., Van Dyke, T. J., and Hoger, A. (2001). A theory of volumetric growth for compressible elastic biological materials. Math. Mech. Solids 6:551–575.Google Scholar
  11. Kuhl, E., and Steinmann, P. (2002). Geometrically nonlinear functional adaptation of biological microstructures. In Mang, H. A., Rammerstorfer, F. G., and Eberhardsteiner, J., eds., Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), 1–21. Vienna, Austria: International Association for Computational Mechanics.Google Scholar
  12. Nordin, M., Lorenz, T., and Campello, M. (2001). Biomechanics of tendons and ligaments. In Nordin, M., and Frankel, V. H., eds., Basic Biomechanics of the Musculoskeletal System. New York: Lippincott Williams and Wilkins. 102–125.Google Scholar
  13. Sengers, B. G., Oomens, C. W. J., and Baaijens, F. P. T. (2004). An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering. J. Biomech. Eng. 126:82–91.CrossRefGoogle Scholar
  14. Taber, L. A., and Humphrey, J. D. (2001). Stress-modulated growth, residual stress, and vascular heterogeneity. J. Biomech. Eng. 123:528–535.CrossRefGoogle Scholar
  15. Woessner, J. F. (1961). The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 93:440–447.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • E. M. Arruda
    • 1
    • 2
  • S. C. Calve
    • 2
  • K. Garikipati
    • 1
  • K. Grosh
    • 1
    • 3
  • H. Narayanan
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of MichiganUSA
  2. 2.Macromolecular Science and Engineering ProgramUniversity of MichiganUSA
  3. 3.Department of Biomedical EngineeringUniversity of MichiganUSA

Personalised recommendations