Advertisement

Early Steps in Rotavirus Cell Entry

  • S. Lopez
  • C. F. Arias
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 309)

Abstract

Rotaviruses, the leading cause of severe dehydrating diarrhea in infants and young children worldwide, are non-enveloped viruses formed by three concentric layers of protein that enclose a genome of double-stranded RNA. These viruses have a specific cell tropism in vivo, infecting primarily the mature enterocytes of the villi of the small intestine. It has been found that rotavirus cell entry is a complex multistep process, in which different domains of the rotavirus surface proteins interact sequentially with different cell surface molecules, which act as attachment and entry receptors. These recently described molecules include integrins (α2β1, αvβ3, and αxβ2) and a heat shock protein (hsc70), and have been found to be associated with cell membrane lipidmicrodomains. The requirement for several cell molecules, which might need to be present and organized in a precise fashion, could explain the cell and tissue tropism of these viruses. This review focuses on recent data describing the interactions between the virus and its receptors, the role of lipid microdomains in rotavirus infection, and the possible mechanism of rotavirus cell entry.

Keywords

Sialic Acid MA104 Cell Trypsin Cleavage Nonenveloped Virus Heat Shock Protein Hsc70 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arias CF, Romero P, Alvarez V, López S (1996) Trypsin activation pathway of rotavirus infectivity. J Virol 70:5832–5839PubMedGoogle Scholar
  2. 2.
    Bass DM, Mackow ER, Greenberg HB (1991) Identification and partial characterization of a rhesus rotavirus binding glycoprotein onmurine enterocytes. Virology 183:602–610PubMedCrossRefGoogle Scholar
  3. 3.
    Bergelson JM (2003) Virus interactions with mucosal surfaces: alternative receptors, alternative pathways. Curr Opin Microbiol 6:386–391PubMedCrossRefGoogle Scholar
  4. 4.
    Bomsel M, Alfsen A (2003) Entry of viruses through the epithelial barrier: pathogenic trickery. Nat Rev Mol Cell Biol 4:57–68PubMedCrossRefGoogle Scholar
  5. 5.
    Burmeister WP, Guilligay D, Cusack S, Wadell G, Arnberg N (2004) Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J Virol 78:7727–7736PubMedCrossRefGoogle Scholar
  6. 6.
    Chappell JD, Prota AE, Dermody TS, Stehle T (2002) Crystal structure of reovirus attachment protein sigma1 reveals evolutionary relationship to adenovirus fiber. EMBO J 21:1–11PubMedCrossRefGoogle Scholar
  7. 7.
    Charpilienne A, Abad MJ, Michelangeli F, Alvarado F, Vasseur M, Cohen J, Ruiz MC (1997) Solubilized and cleaved VP7, the outer glycoprotein of rotavirus, induces permeabilization of cell membrane vesicles. J Gen Virol 78:1367–1371PubMedGoogle Scholar
  8. 8.
    Chazal N, Gerlier D (2003) Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev 67:226–237, table of contentsPubMedCrossRefGoogle Scholar
  9. 9.
    Chemello ME, Aristimuno OC, Michelangeli F, Ruiz MC (2002) Requirement for vacuolar H+-ATPase activity and Ca2+ gradient during entry of rotavirus into MA104 cells. J Virol 76:13083–13087PubMedCrossRefGoogle Scholar
  10. 10.
    Ciarlet M, Crawford SE, Cheng E, Blutt SE, Rice DA, Bergelson JM, Estes MK (2002) VLA-2 (alpha2beta1) integrin promotes rotavirus entry into cells but is not necessary for rotavirus attachment. J Virol 76:1109–1123PubMedGoogle Scholar
  11. 11.
    Ciarlet M, Estes MK (1999) Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity. J Gen Virol 80:943–948PubMedGoogle Scholar
  12. 12.
    Clapham PR, McKnight A (2002) Cell surface receptors, virus entry and tropism of primate lentiviruses. J Gen Virol 83:1809–1829PubMedGoogle Scholar
  13. 13.
    Clark SM, Roth JR, Clark ML, Barnett BB, Spendlove RS (1981) Trypsin enhancement of rotavirus infectivity: mechanism of enhancement. J Virol 39:816–822PubMedGoogle Scholar
  14. 14.
    Compton T (2004) Receptors and immune sensors: the complex entry path of human cytomegalovirus. Trends Cell Biol 14:5–8PubMedCrossRefGoogle Scholar
  15. 15.
    Coulson BS, Londrigan SL, Lee DJ (1997) Rotavirus contains integrin ligand sequences and a disintegrin-like domain that are implicated in virus entry into cells. Proc Natl Acad Sci U S A 94:5389–5394PubMedCrossRefGoogle Scholar
  16. 16.
    Crawford SE, Mukherjee SK, Estes MK, Lawton JA, Shaw AL, Ramig RF, Prasad BV (2001) Trypsin cleavage stabilizes the rotavirus VP4 spike. J Virol 75:6052–6061PubMedCrossRefGoogle Scholar
  17. 17.
    Delorme C, Brussow H, Sidoti J, Roche N, Karlsson KA, Neeser JR, Teneberg S (2001) Glycosphingolipid binding specificities of rotavirus: identification of a sialic acid-binding epitope. J Virol 75:2276–2287PubMedCrossRefGoogle Scholar
  18. 18.
    Denisova E, Dowling W, LaMonica R, Shaw R, Scarlata S, Ruggeri F, Mackow ER (1999) Rotavirus capsid protein VP5* permeabilizesmembranes. J Virol 73:3147–3153PubMedGoogle Scholar
  19. 19.
    Dimiter S (2004) Virus entry: molecular mechanisms and biomedical applications. Nat Rev Microbiol 2:109–122CrossRefGoogle Scholar
  20. 20.
    Dormitzer PR, Greenberg HB, Harrison SC (2000) Purified recombinant rotavirus VP7 forms soluble, calcium-dependent trimers. Virology 277:420–428PubMedCrossRefGoogle Scholar
  21. 21.
    Dormitzer PR, Nason EB, Prasad BV, Harrison SC (2004) Structural rearrangements in the membrane penetration protein of a non-enveloped virus. Nature 430:1053–1058PubMedCrossRefGoogle Scholar
  22. 22.
    Dormitzer PR, Sun ZY, Blixt O, Paulson JC, Wagner G, Harrison SC (2002) Speci-ficity and affinity of sialic acid binding by the rhesus rotavirus VP8* core. J Virol 76:10512–10517PubMedCrossRefGoogle Scholar
  23. 23.
    Dormitzer PR, Sun ZYJ, Wagner G, Harrison SC (2002) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21:885–897PubMedCrossRefGoogle Scholar
  24. 24.
    Dowling W, Denisova E, LaMonica R, Mackow ER (2000) Selective membrane permeabilization by the rotavirus VP5* protein is abrogated by mutations in an internal hydrophobic domain. J Virol 74:6368–6376PubMedCrossRefGoogle Scholar
  25. 25.
    Espejo RT, Lopez S, Arias C (1981) Structural polypeptides of simian rotavirus SA11 and the effect of trypsin. J Virol 37:156–160PubMedGoogle Scholar
  26. 26.
    Estes MK (2001) Rotaviruses and their replication. In: Knipe DM, Howley PM et al. (eds) Fields virology 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 1747–1785Google Scholar
  27. 27.
    Estes MK, Graham DY, Mason BB (1981) Proteolytic enhancement of rotavirus infectivity: molecular mechanisms. J Virol 39:879–888PubMedGoogle Scholar
  28. 28.
    Falconer MM, Gilbert JM, Roper AM, Greenberg HB, Gavora JS (1995) Rotavirusinduced fusion from without in tissue culture cells. J Virol 69:5582–5591PubMedGoogle Scholar
  29. 29.
    Fiore L, Greenberg HB, Mackow ER (1991) The VP8 fragment of VP4 is the rhesus rotavirus hemagglutinin. Virology 181:553–563PubMedCrossRefGoogle Scholar
  30. 30.
    Fuentes Panana EM, López S, Gorziglia M, Arias CF (1995) Mapping the hemagglutination domain of rotaviruses. J Virol 69:2629–2632PubMedGoogle Scholar
  31. 31.
    Fukudome K, Yoshie O, Konno T (1989) Comparison of human, simian, and bovine rotaviruses for requirement of sialic acid in hemagglutination and cell adsorption. Virology 172:196–205PubMedCrossRefGoogle Scholar
  32. 32.
    Gavrilovskaya IN, Shepley M, Shaw R, Ginsberg MH, Mackow EM (1998) β3 integrinsmediate the cellular entry of hantaviruses that cause respiratory failure. Proc Natl Acad Sci U S A 95:7074–7079PubMedCrossRefGoogle Scholar
  33. 33.
    Gilbert JM, Greenberg HB (1998) Cleavage of rhesus rotavirus VP4 after arginine 247 is essential for rotavirus-like particle-induced fusion from without. J Virol 72:5323–5327PubMedGoogle Scholar
  34. 34.
    Glass RI, Bresee JS, Parashar UD, Jiang B, Gentsch J (2004) The future of rotavirus vaccines: a major setback leads to new opportunities. Lancet 363:1547–1550PubMedCrossRefGoogle Scholar
  35. 35.
    Golantsova NE, Gorbunova EE, Mackow ER (2004) Discrete domains within the rotavirus VP5* direct peripheral membrane association and membrane permeability. J Virol 78:2037–2044PubMedCrossRefGoogle Scholar
  36. 36.
    Graham KL, Halasz P, Tan Y, Hewish MJ, Takada Y, Mackow ER, Robinson MK, Coulson BS (2003) Integrin-using rotaviruses bind alpha2beta1 integrin alpha2 I domain via VP4 DGE sequence and recognize alphaXbeta2 and alphaVbeta3 by using VP7 during cell entry. J Virol 77:9969–9978PubMedCrossRefGoogle Scholar
  37. 37.
    Guerrero CA, Bouyssounade D, Zárate S, Isa P, López T, Espinosa R, Romero P, Méndez E, López S, Arias CF (2002) Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol 76:4096–4102PubMedCrossRefGoogle Scholar
  38. 38.
    Guerrero CA, Méndez E, Zárate S, Isa P, López S, Arias CF (2000) Integrin alpha(v)beta(3) mediates rotavirus cell entry. Proc Natl Acad Sci U S A 97:14644–14649PubMedCrossRefGoogle Scholar
  39. 39.
    Guerrero CA, Zárate S, Corkidi G, López S, Arias CF (2000) Biochemical characterization of rotavirus receptors in MA104 cells. J Virol 74:9362–9371PubMedCrossRefGoogle Scholar
  40. 40.
    Guo C, Nakagomi O, Mochizuki M, Ishida H, Kiso M, Ohta Y, Suzuki T, Miyamoto D, Jwa Hidari KI, Suzuki Y (1999) Ganglioside GM1a on the cell surface is involved in the infection by human rotavirus KUN and MO strains1. J Biochem (Tokyo) 126:683–688PubMedGoogle Scholar
  41. 41.
    Gut A, Balda MS, Matter K (1998) The cytoplasmic domains of a beta1 integrin mediate polarization in Madin-Darby canine kidney cells by selective basolateral stabilization. J Biol Chem 273:29381–29388PubMedCrossRefGoogle Scholar
  42. 42.
    Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579PubMedCrossRefGoogle Scholar
  43. 43.
    Haywood AM (1994) Virus receptors: binding, adhesion strengthening, and changes in viral structure. J Virol 68:1–5PubMedGoogle Scholar
  44. 44.
    Hewish MJ, Takada Y, Coulson BS (2000) Integrins a2b1 and a4b1 can mediate SA11 rotavirus attachment and entry into cells. J. Virol 74:228–236PubMedCrossRefGoogle Scholar
  45. 45.
    Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25PubMedCrossRefGoogle Scholar
  46. 46.
    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687PubMedCrossRefGoogle Scholar
  47. 47.
    Isa P, López S, Segovia L, Arias CF (1997) Functional and structural analysis of the sialic acid-binding domain of rotaviruses. J Virol 71:6749–6756PubMedGoogle Scholar
  48. 48.
    Isa P, Realpe M, Romero P, Lopez S, Arias CF (2004) Rotavirus RRV associates with lipid membrane microdomains during cell entry. Virology 322:370–381PubMedCrossRefGoogle Scholar
  49. 49.
    Iturriza-Gomara M, Desselberger U, Gray J (2003) Molecular epidemiology of rotaviruses: Genetic mechanisms associated with diversity. In: Desselberger U and Gray J (eds) Viral gastroenteritis, Elsevier, Amsterdam, pp 317–344CrossRefGoogle Scholar
  50. 50.
    Jolly CL, Beisner BM, Holmes IH (2000) Rotavirus infection of MA104 cells is inhibited by Ricinus lectin and separately expressed single binding domains. Virology 275:89–97PubMedCrossRefGoogle Scholar
  51. 51.
    Jolly CL, Huang JA, Holmes IH (2001) Selection of rotavirus VP4 cell receptor binding domains for MA104 cells using a phage display library. J Virol Methods 98:41–51PubMedCrossRefGoogle Scholar
  52. 52.
    Kapikian AZ, Hoshino Y, Chanock RM (2001) Rotaviruses. In: Knipe DM, Howley PM et al. (eds) Fields virology, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 1787–1833Google Scholar
  53. 53.
    Keljo DJ, Smith AK (1988) Characterization of binding of simian rotavirus SA-11 to cultured epithelial cells. J Pediatr Gastroenterol Nutr 7:249–256PubMedCrossRefGoogle Scholar
  54. 54.
    Londrigan SL, Graham KL, Takada Y, Halasz P, Coulson BS (2003) Monkey rotavirus binding to alpha2beta1 integrin requires the alpha2 I domain and is facilitated by the homologous beta1 subunit. J Virol 77:9486–9501PubMedCrossRefGoogle Scholar
  55. 55.
    Lopez S, Arias CF (2004) Multistep entry of rotavirus into cells: a Versaillesque dance. Trends Microbiol 12:271–278PubMedCrossRefGoogle Scholar
  56. 56.
    López S, Arias CF (2003)Attachment and post-attachment receptors for rotavirus. In: Desselberger U and Gray J (eds) Viral gastroenteritis, Elsevier, Amsterdam, pp 143–163CrossRefGoogle Scholar
  57. 57.
    Lopez S, Arias CF, Bell JR, Strauss JH, Espejo RT (1985) Primary structure of the cleavage site associated with trypsin enhancement of rotavirus SA11 infectivity. Virology 144:11–19PubMedCrossRefGoogle Scholar
  58. 58.
    Lopez S, Lopez I, Romero P, Mendez E, Soberon X, Arias CF (1991) Rotavirus YM gene 4: analysis of its deduced amino acid sequence and prediction of the secondary structure of the VP4 protein. J Virol 65:3738–3745PubMedGoogle Scholar
  59. 59.
    Ludert JE, Feng NG, Yu JH, Broome RL, Hoshino Y, Greenberg HB (1996) Genetic mapping indicates that VP4 is the rotavirus cell attachment protein in vitro and in vivo. J Virol 70:487–493PubMedGoogle Scholar
  60. 60.
    Ludert JE, Ruiz MC, Hidalgo C, Liprandi F (2002) Antibodies to rotavirus outer capsid glycoprotein VP7 neutralize infectivity by inhibiting virion decapsidation. J Virol 76:6643–6651PubMedCrossRefGoogle Scholar
  61. 61.
    Mackow ER, Shaw RD, Matsui SM, Vo PT, Dang MN, Greenberg HB (1988) The rhesus rotavirus gene encoding protein VP3: location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. Proc Natl Acad Sci U S A 85:645–649PubMedCrossRefGoogle Scholar
  62. 62.
    Manes S, del Real G, Martinez AC (2003) Pathogens: raft hijackers. Nat Rev Immunol 3:557–568PubMedCrossRefGoogle Scholar
  63. 63.
    Markwell MA, Paulson JC (1980) Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants. Proc Natl Acad Sci U S A 77:5693–5697PubMedCrossRefGoogle Scholar
  64. 64.
    Mayer MP, Bukau B (1998) Hsp70 chaperone systems: diversity of cellular functions and mechanism of action. Biol Chem 379:261–268PubMedGoogle Scholar
  65. 65.
    Méndez E, Arias CF, López S (1993) Binding to sialic acids is not an essential step for the entry of animal rotaviruses to epithelial cells in culture. J Virol 67:5253–5259PubMedGoogle Scholar
  66. 66.
    Méndez E, López S, Cuadras MA, Romero P, Arias CF (1999) Entry of rotaviruses is a multistep process. Virology 263:450–459PubMedCrossRefGoogle Scholar
  67. 67.
    Morimoto RI, Kline MP, Bimston DN, Cotto JJ (1997) The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 32:17–29PubMedGoogle Scholar
  68. 68.
    Mossel EC, Ramig RF (2003) A lymphatic mechanism of rotavirus extraintestinal spread in the neonatal mouse. J Virol 77:12352–12356PubMedCrossRefGoogle Scholar
  69. 69.
    Multhoff G, Hightower LE (1996) Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1:167–176PubMedCrossRefGoogle Scholar
  70. 70.
    Nabi IR, Le PU (2003) Caveolae/raft-dependent endocytosis. J Cell Biol 161:673–677PubMedCrossRefGoogle Scholar
  71. 71.
    Nava P, Lopez S, Arias CF, Islas S, Gonzalez-Mariscal L (2004) The rotavirus surface protein VP8 modulates the gate and fence function of tight junctions in epithelial cells. J Cell Sci 117:5509–5519PubMedCrossRefGoogle Scholar
  72. 72.
    Nemerow GR, Stewart PL (2001) Antibody neutralization epitopes and integrin binding sites on nonenveloped viruses. Virology 288:189–191PubMedCrossRefGoogle Scholar
  73. 73.
    Newmyer SL, Schmid SL (2001) Dominant-interfering Hsc70 mutants disrupt multiple stages of the clathrin-coated vesicle cycle in vivo. J Cell Biol 152:607–620PubMedCrossRefGoogle Scholar
  74. 74.
    Offit PA, Clark FH, Ward RL (2003) Current state of development of human rotavirus vaccines. In: Desselberger U, Gray J (eds) Viral gastroenteritis. Elsevier, Amsterdam, pp 345–368CrossRefGoogle Scholar
  75. 75.
    Parashar UD, Hummelman EG, Bresee JS, Miller MA, Glass RI (2003) Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis 9:565–572PubMedGoogle Scholar
  76. 76.
    Pesavento JB, Estes MK, Prasad BVV (2003) Structural organization of the genome in rotavirus. In: Viral Gastroenteritis. Desselberger U, Gray J (eds) Viral gastroenteritis. Elsevier, Amsterdam, pp 115–128CrossRefGoogle Scholar
  77. 77.
    Prasad BV, Burns JW, Marietta E, Estes MK, Chiu W (1990) Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Nature 343:476–479PubMedCrossRefGoogle Scholar
  78. 78.
    Prasad BV, Wang GJ, Clerx JP, Chiu W (1988) Three-dimensional structure of rotavirus. J Mol Biol 199:269–275PubMedCrossRefGoogle Scholar
  79. 79.
    Ramig RF (2004) Pathogenesis of intestinal and systemic rotavirus infection. J Virol 78:10213–10220PubMedCrossRefGoogle Scholar
  80. 80.
    Rolsma MD, Kuhlenschmidt TB, Gelberg HB, Kuhlenschmidt MS(1998) Structure and function of a ganglioside receptor for porcine rotavirus. J Virol 72:9079–9091PubMedGoogle Scholar
  81. 81.
    Ruggeri FM, Greenberg HB (1991) Antibodies to the trypsin cleavage peptide VP8 neutralize rotavirus by inhibiting binding of virions to target cells in culture. J Virol 65:2211–19PubMedGoogle Scholar
  82. 82.
    Ruiz MC, Alonso-Torre SR, Charpilienne A, Vasseur M, Michelangeli F, Cohen J, Alvarado F (1994) Rotavirus interaction with isolated membrane vesicles. J Virol 68:4009–4016PubMedGoogle Scholar
  83. 83.
    Sanchez-San Martin C, Lopez T, Arias CF, Lopez S (2004) Characterization of rotavirus cell entry. J Virol 78:2310–2318PubMedCrossRefGoogle Scholar
  84. 84.
    Shaw AL, Rothnagel R, Chen D, Ramig RF, Chiu W, Prasad BV (1993) Three-dimensional visualization of the rotavirus hemagglutinin structure. Cell 74:693–701PubMedCrossRefGoogle Scholar
  85. 85.
    Simons K, Ikonen E (1997) Functional rafts in cellmembranes. Nature 387:569–72PubMedCrossRefGoogle Scholar
  86. 86.
    Smith AE, Helenius A (2004) How viruses enter animal cells. Science 304:237–242PubMedCrossRefGoogle Scholar
  87. 87.
    Spear PG (2004) Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 6:401–410PubMedCrossRefGoogle Scholar
  88. 88.
    Stehle T, Harrison SC (1997) High-resolution structure of a polyomavirus VP1-oligosaccharide complex: implications for assembly and receptor binding. EMBO J 16:5139–5148PubMedCrossRefGoogle Scholar
  89. 89.
    Superti F, Donelli G (1991) Gangliosides as binding sites in SA-11 rotavirus infection of LLC-MK2 cells. J Gen Virol 72:2467–2474PubMedCrossRefGoogle Scholar
  90. 90.
    Tihova M, Dryden KA, Bellamy AR, Greenberg HB, Yeager M (2001) Localization of membrane permeabilization and receptor binding sites on the VP4 hemagglutinin of rotavirus: implications for cell entry. J Mol Biol 314:985–992PubMedCrossRefGoogle Scholar
  91. 91.
    Triantafilou K, Takada Y, Triantafilou M (2001) Mechanisms of integrin-mediated virus attachment and internalization process. Crit Rev Immunol 21:311–322PubMedGoogle Scholar
  92. 92.
    Triantafilou K, Triantafilou M (2003) Lipid raft microdomains: key sites for Coxsackievirus A9 infectious cycle. Virology 317:128–135PubMedCrossRefGoogle Scholar
  93. 93.
    Weis W, Brown JH, Cusack S, Paulson JC, Skehel JJ, Wiley DC (1988) Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333:426–431PubMedCrossRefGoogle Scholar
  94. 94.
    Wu E, Nemerow GR (2004) Virus Yoga: the role of flexibility in virus host cell recognition. Trends Microbiol 12:162–169PubMedCrossRefGoogle Scholar
  95. 95.
    Yeager M, Berriman JA, Baker TS, Bellamy AR (1994) Three-dimensional structure of the rotavirus haemagglutinin VP4 by cryo-electron microscopy and difference map analysis. EMBO J 13:1011–1018PubMedGoogle Scholar
  96. 96.
    Yeager M, Dryden KA, Olson NH, Greenberg HB, Baker TS (1990) Three-dimensional structure of rhesus rotavirus by cryoelectron microscopy and image reconstruction. J Cell Biol 110:2133–2144PubMedCrossRefGoogle Scholar
  97. 97.
    Zárate S, Cuadras MA, Espinosa R, Romero P, Juárez KO, Camacho-Nuez M, Arias CF, López S (2003) Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. J Virol 77:7254–260PubMedCrossRefGoogle Scholar
  98. 98.
    Zárate S, Espinosa R, Romero P, Guerrero CA, Arias CF, López S (2000) Integrin alpha2beta1 mediates the cell attachment of the rotavirus neuraminidase-resistant variant nar3. Virology 278:50–54PubMedCrossRefGoogle Scholar
  99. 99.
    Zárate S, Espinosa R, Romero P, Méndez E, Arias CF, López S (2000) The VP5 domain of VP4 can mediate attachment of rotaviruses to cells. J. Virol 74:593–599PubMedCrossRefGoogle Scholar
  100. 100.
    Zárate S, Romero P, Espinosa R, Arias CF, López S (2004) VP7 mediates the interaction of rotaviruses with integrin alphavbeta3 through a novel integrin-binding site. J Virol 78:10839–10847PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations