Advertisement

When is a Linear Complementarity System Controllable?

  • M. K. çamlibel
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 104)

Keywords

Nonzero Solution Piecewise Linear System Invariant Zero Geometric Control Theory Complementarity System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V.D. Blondel and J.N. Tsitsiklis. “Complexity of stability and controllability of elementary hybrid systems”, Automatica, 35(3):479-490, 1999zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    R.F. Brammer, “Controllability in linear autonomous systems with positive controllers”, SIAM J. Control, 10(2):329-353, 1972CrossRefMathSciNetGoogle Scholar
  3. [3]
    M.K. Camlibel, W.P.M.H. Heemels, and J.M. Schumacher, “On the controllability of bimodal piecewise linear systems”, In R. Alur and G.J. Pappas, editors, Hybrid Syst. Comput. Control, pages 250-264. Springer, Berlin, 2004Google Scholar
  4. [4]
    M.K. Camlibel, W.P.M.H. Heemels, and J.M.Schumacher, “Algebraic necessary and sufficient conditions for the controllability of conewise linear systems”, 2005. submitted for publicationGoogle Scholar
  5. [5]
    M.K. Camlibel, W.P.M.H. Heemels, and J.M. Schumacher, “Stability and controllability of planar bimodal complementarity systems”, In Proc. of the 4th IEEE Conference on Decision and Control, Hawaii (USA), 2003Google Scholar
  6. [6]
    M.K. Camlibel, L. Iannelli, and F. Vasca, “Modelling switching power converters as complementarity systems”, In Proc. of the 43th IEEE Conference on Decision and Control, Paradise Islands (Bahamas), 2004Google Scholar
  7. [7]
    R.W. Cottle, J.-S. Pang, and R.E. Stone, “The Linear Complementarity Problem”, Academic, Boston, 1992Google Scholar
  8. [8]
    W.P.M.H. Heemels and B. Brogliato, “The complementarity class of hybrid dynamical systems”, Eur. J. Control, 26(4):651-677, 2003Google Scholar
  9. [9]
    T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980zbMATHGoogle Scholar
  10. [10]
    R.E. Kalman, “On the general theory of control systems”, In Proc. of the 1st World Congress of the International Federation of Automatic Control, pages 481-493, 1960Google Scholar
  11. [11]
    R.E. Kalman, “Mathematical description of linear systems”, SIAM J. Control, 1:152-192, 1963zbMATHMathSciNetGoogle Scholar
  12. [12]
    E.B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley New York, 1967.zbMATHGoogle Scholar
  13. [13]
    O.L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969zbMATHGoogle Scholar
  14. [14]
    S.H. Saperstone and J.A. Yorke, “Controllability of linear oscillatory systems using positive controls”, SIAM J. Control, 9(2):253-262, 1971zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    A.J. van der Schaft and J.M. Schumacher, An Introduction to Hybrid Dynamical Systems, Springer, Berlin Heidelberg New York, London, 2000zbMATHGoogle Scholar
  16. [16]
    J.M. Schumacher, “Complementarity systems in optimization”, Math. Program. Ser. B, 101:263-295, 2004zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    H.L. Trentelman, A. A. Stoorvogel, and M.L.J. Hautus, Control Theory for Linear Systems, Springer, Berlin Heidelberg New York, London, 2001zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. K. çamlibel
    • 1
    • 2
  1. 1.Electronics and Communications DepartmentDĞGUŞ UniversityAcibademTurkey
  2. 2.Department of Mechanical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations