Advertisement

Heat Shock Proteins in Inflammation

  • Z. Bromberg
  • Y. G. Weiss
  • C. S. Deutschman
Conference paper
Part of the Update in Intensive Care and Emergency Medicine book series (volume 44)

Conclusion

HSPs are important mediators of a number of key intracellular reactions. Of importance to the care of the critically ill are their involvement in protein repair and tertiary structure. HSP70 is known to modulate inflammation and apoptosis. In models of acute lung injury and ARDS, over-expression of HSP70 improves outcome, ameliorates lung injury and attenuates inflammation. The involvement of HSP70 in other aspects of lung injury and in other components of MODS is under investigation.

Keywords

Heat Shock Protein Acute Lung Injury Acute Respiratory Distress Syndrome HSP70 Expression Multiple Organ Dysfunction Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Davis TR (1974) Effects of heat on animals and man. Prog Biometeorol 1:228–238, 635–637PubMedGoogle Scholar
  2. 2.
    De Maio A (1999) Heat shock proteins: facts, thoughts and dreams. Shock 11:1–12PubMedCrossRefGoogle Scholar
  3. 3.
    Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81:1461–1497PubMedGoogle Scholar
  4. 4.
    Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282PubMedCrossRefGoogle Scholar
  5. 5.
    Pilon M, Schekman R (1999) Protein translocation: how Hsp70 pulls it off. Cell 11:679–682CrossRefGoogle Scholar
  6. 6.
    Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186PubMedGoogle Scholar
  7. 7.
    Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70:603–647PubMedCrossRefGoogle Scholar
  8. 8.
    Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858PubMedCrossRefGoogle Scholar
  9. 9.
    Yerbury JJ, Stewart EM, Wyatt AR, Wilson MR (2005) Quality control of protein folding in extracellular space. EMBO Rep 6:1131–1136PubMedCrossRefGoogle Scholar
  10. 10.
    Rajan RS, Illing ME, Bence NF, Kopito RR (2001) Specificity in intracellular protein aggregation and inclusion body formation. Proc Natl Acad Sci USA 98:13060–13065PubMedCrossRefGoogle Scholar
  11. 11.
    Hinault MP, Ben-Zvi A, Goloubinoff P (2006) Molecular chaperones: Cellular fold-controlling factors of toxic protein aggregates in neurodegenerative diseases. J Mol Neurosci (in press)Google Scholar
  12. 12.
    Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579PubMedCrossRefGoogle Scholar
  13. 13.
    Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366PubMedCrossRefGoogle Scholar
  14. 14.
    Whitesell L, Lindquist SL (2005) Hsp90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772PubMedCrossRefGoogle Scholar
  15. 15.
    Wegele H, Muller L, Buchner J (2004) Hsp70 and Hsp90-a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1–44PubMedCrossRefGoogle Scholar
  16. 16.
    Westerheide SD, Morimoto RI (2005) Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 280:33097–33100PubMedCrossRefGoogle Scholar
  17. 17.
    Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH (1995) Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95:1446–1456PubMedCrossRefGoogle Scholar
  18. 18.
    Kluck CJ, Patzelt H, Genevaux P, et al (2002) Structure-function analysis of HscC, the Escherichia coli member of a novel subfamily of specialized Hsp70 chaperones. J Biol Chem 277:41060–4169PubMedCrossRefGoogle Scholar
  19. 19.
    Bellmann K, Wenz A, Radons J, Burkart V, Kleemann R, Kolb H (1995) Heat shock induces resistance in rat pancreatic islet cells against nitric oxide, oxygen radicals and streptozotocin toxicity in vitro. J Clin Invest 95:2840–2845PubMedGoogle Scholar
  20. 20.
    Klosterhalfen B, Hauptmann S, Tietze L, et al (1997) The influence of heat shock protein 70 induction on hemodynamic variables in a porcine model of recurrent endotoxemia. Shock 7:358–363PubMedCrossRefGoogle Scholar
  21. 21.
    Tacchini L, Schiaffonati L, Pappalardo C, Gatti S, Bernelli-Zazzera A (1993) Expression of Hsp70, immediate-early response and heme oxygenase genes in ischemic-reperfused rat liver. Lab Invest 68:465–471PubMedGoogle Scholar
  22. 22.
    Wong HR, Wispe JR (1997) The stress response and the lung. Am J Physiol 273:L1–19PubMedGoogle Scholar
  23. 23.
    Schroeder S, Lindemann C, Hoeft A, et al (1999) Impaired inducibility of heat shock protein 70 in peripheral blood lymphocytes of patients with severe sepsis. Crit Care Med 27:1080–1084PubMedCrossRefGoogle Scholar
  24. 24.
    Milberg JA, Davis DR, Steinberg KP, Hudson LD (1995) Improved survival of patients with acute respiratory distress syndrome (ARDS): 1983–1993. JAMA 273:306–309PubMedCrossRefGoogle Scholar
  25. 25.
    Baue AE, Durham R, Faist E (1998) Systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome(MODS), multiple organ failure (MOF): are we winning the battle? Shock 10:79–89PubMedCrossRefGoogle Scholar
  26. 26.
    Rubenfeld GD, Caldwell E, Peabody E, et al (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353:1685–1693PubMedCrossRefGoogle Scholar
  27. 27.
    Weiss YG, Bouwman A, Gehan B, Schears G, Raj N, Deutschman CS (2000) Cecal ligation and double puncture impairs heat shock protein 70 (Hsp70) expression in the lungs of rats. Shock 13:19–23PubMedGoogle Scholar
  28. 28.
    Smart SJ, Casale TB (1994) TNF-alpha-induced transendothelial neutrophil migration is IL-8 dependent. Am J Physiol 266:L238–L245PubMedGoogle Scholar
  29. 29.
    Vreugdenhil HA, Haitsma JJ, Jansen KJ, et al (2003) Ventilator-induced heat shock protein 70 and cytokine mRNA expression in a model of lipopolysaccharide-inducedlung inflammation. Intensive Care Med 29:915–922PubMedGoogle Scholar
  30. 30.
    Durand P, Bachelet M, Brunet F, et al. (2000) Inducibility of the 70 kD heat shock protein in peripheral blood monocytes is decreased in human acute respiratory distress syndrome and recovers over time. Am J Respir Crit Care Med, 161:286–292PubMedGoogle Scholar
  31. 31.
    Villar J, Ribeiro SP, Mullen JB, Kuliszewski M, Post M, Slutsky AS (1994) Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model. Crit Care Med 22:914–921PubMedGoogle Scholar
  32. 32.
    Weiss YG, Tazelaar J, Gehan BA, et al (2001) Adenoviral vector transfection into the pulmonary epithelium after cecal ligation and puncture in rats. Anesthesiology 95:974–982PubMedCrossRefGoogle Scholar
  33. 33.
    Rosenfeld MA, Yoshimura K, Trapnell BC, et al (1992) In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68:143–155PubMedCrossRefGoogle Scholar
  34. 34.
    Dong JY, Wang D, Van Ginkel FW, Pascual DW, Frizzell RA (1996) Systematic analysis of repeated gene delivery into animal lungs with a recombinant adenovirus vector. Hum Gene Ther 7:319–331PubMedGoogle Scholar
  35. 35.
    Touqui L, Arbibe L (1999) A role for phospholipase A2 in ARDS pathogenesis. Mol Med Today 5:244–249PubMedCrossRefGoogle Scholar
  36. 36.
    Weiss YG, Bellin L, Kim PK, et al (2001) Compensatory hepatic regeneration after mild, but not fulminant, intraperitoneal sepsis in rats. Am J Physiol Gastrointest Liver Physiol 280:G968–G973PubMedGoogle Scholar
  37. 37.
    Artigas A, Bernard GR, Carlet J, et al (1998) The American-European Consensus Conference on ARDS, part 2. Ventilatory, pharmacologic, supportive therapy, study design strategies and issues related to recovery and remodeling. Intensive Care Med 24:378–398PubMedCrossRefGoogle Scholar
  38. 38.
    Weiss YG, Maloyan A, Tazelaar J, Raj N, Deutschman CS (2002) Adenoviral transfer of Hsp70 into pulmonary epithelium ameliorates experimental acute respiratory distress syndrome. J Clin Invest 110:801–806PubMedCrossRefGoogle Scholar
  39. 39.
    Andrejko KM, Chen J, Deutschman CS (1998) Intrahepatic STAT-3 activation and acute phase gene expression predict outcome after CLP sepsis in the rat. Am J Physiol 275:G1423–G1429PubMedGoogle Scholar
  40. 40.
    Deutschman CS, De Maio A, Buchman TG, Clemens MG (1993) Sepsis-induced alterations in phosphoenolpyruvate carboxykinase expression: the role of insulin and glucagon. Circ Shock 40:295–302PubMedGoogle Scholar
  41. 41.
    Deutschman CS, Andrejko KM, Haber BA, et al (1997) Sepsis-induced depression of rat glucose-6-phosphatase gene expression and activity. Am J Physiol 273:R1709–R1718PubMedGoogle Scholar
  42. 42.
    Schears GJ, Costarino AT (1999) Complexity of inflammatory mediators in acute respiratory distress syndrome (ARDS). J Pediatr 135:144–146PubMedCrossRefGoogle Scholar
  43. 43.
    Malloy J, McCaig L, Veldhuizen R, et al (1997) Alterations of the endogenous surfactant system in septic adult rats. Am J Respir Crit Care Med 156:617–623PubMedGoogle Scholar
  44. 44.
    Ofenstein JP, Heidemann S, Juett A, Sarnaik A (1998) Endotoxin inhibits heat induced Hsp70 in rats. Crit Care Med 26(Suppl 1):A 138 (abst)Google Scholar
  45. 45.
    Mosser DD, Caron AW, Bourget L, et al (2000) The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20:7146–7159PubMedCrossRefGoogle Scholar
  46. 46.
    Guzhova IV, Darieva ZA, Melo AR, Margulis BA (1997) Major stress protein Hsp70 interacts with NF-?B regulatory complex in human T-lymphoma cells. Cell Stress Chaperones 2:132–139PubMedCrossRefGoogle Scholar
  47. 47.
    Jaattela M, Wissing D, Bauer PA, Li GC (1992) Major heat shock protein hsp70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J 11:3507–3512PubMedGoogle Scholar
  48. 48.
    Kitamura Y, Hashimoto S, Mizuta N, et al (2001) Fas/FasL-dependent apoptosis of alveolar cells after lipopolysaccharide-induced lung injury in mice. Am J Respir Crit Care Med 163:762–769PubMedGoogle Scholar
  49. 49.
    Serrao KL, Fortenberry JD, Owens ML, Harris FL, Brown LA (2001) Neutrophils induce apoptosis of lung epithelial cells via release of soluble Fas ligand. Am J Physiol Lung Cell Mol Physiol 280:L298–L305PubMedGoogle Scholar
  50. 50.
    Matute-Bello G, Liles WC, Steinberg KP, et al (1999) Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury (ARDS). J Immunol 163:2217–2225PubMedGoogle Scholar
  51. 51.
    Petrache I, Verin AD, Crow MT, Birukova A, Liu F, Garcia JG (2001) Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 280:L1168–L1178PubMedGoogle Scholar
  52. 52.
    Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11:372–377PubMedCrossRefGoogle Scholar
  53. 53.
    Akira S, Hoshino K, Kaisho T (2000) The role of Toll-like receptors and MyD88 in innate immune responses. J Endotoxin Res 6:383–387PubMedCrossRefGoogle Scholar
  54. 54.
    Bromberg Z, Deutschman CS, Weiss YG (2005) Heat shock protein 70 and the acute respiratory distress syndrome. J Anesth 19:236–242PubMedCrossRefGoogle Scholar
  55. 55.
    Beere HM, Wolf BB, Cain K, et al (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475PubMedCrossRefGoogle Scholar
  56. 56.
    Ravagnan L, Gurbuxani S, Susin SA, et al (2001) Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 3:839–843PubMedCrossRefGoogle Scholar
  57. 57.
    Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES (2000) Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat Cell Biol 2:476–483PubMedCrossRefGoogle Scholar
  58. 58.
    Garrido C, Schmitt E, Cande C, Vahsen N, Parcellier A, Kroemer G (2003) HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Review Cell Cycle 2:579–584Google Scholar
  59. 59.
    Christman JW, Sadikot RT, Blackwell TS (2000) The role of nuclear factor-κB in pulmonary diseases. Chest 117:1482–1487PubMedCrossRefGoogle Scholar
  60. 60.
    Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298:1241–1245PubMedCrossRefGoogle Scholar
  61. 61.
    Chen LW, Egan L, Li ZW, Greten FR, Kagnoff MF, Karin M (2003) The two faces of IKK and NF-kappa B inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nat Med 9:575–581PubMedCrossRefGoogle Scholar
  62. 62.
    Ghosh S, May MJ, Kopp ER (1998) NF-κB and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260PubMedCrossRefGoogle Scholar
  63. 63.
    Yamamoto Y, Kim DW, Kwak YT, Parjapati S, Verma U, Gaynor RB (2001) IKKγ/NEMO facilitates the recruitment of the IκB proteins into the IκB Kinase complex. J Biol Chem 276:36327–36336PubMedCrossRefGoogle Scholar
  64. 64.
    Mercurio F, Zhu H, Murray BW, et al (1997) IKK1 and IKK2: Cytokine-activated IκB kinases essential for NF-κB activation. Science 278:860–866PubMedCrossRefGoogle Scholar
  65. 65.
    Poyet JL, Srinivasula SM, Lin JH, et al (2000) Activation of the I kappa B kinases by RIP via IKKgamma /NEMO-mediated oligomerization. J Biol Chem 275:37966–37977PubMedCrossRefGoogle Scholar
  66. 66.
    Ducut Sigala JL, Bottero V, Young DB, Shevchenko A, Mercurio F, Verma IM (2004) Activation of transcription factor NF-κB requires ELKS, an IκB kinase regulatory subunit. Science 304:1963–1967PubMedCrossRefGoogle Scholar
  67. 67.
    Read MA, Brownell JE, Gladysheva TB, et al (2000) Nedd8 modification of cul-1 activates SCF(beta(TrCP)-dependent ubiquitination of I kappaB alpha. Mol Cell Biol 20:2326–2333PubMedCrossRefGoogle Scholar
  68. 68.
    Ben-Neriah Y (2002) Regulatory functions of ubiquitination in the immune system. Nat Immunol 3:20–26PubMedCrossRefGoogle Scholar
  69. 69.
    Ciechanover A, Orian A, Schwartz A (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. BioEssays 22:442–451PubMedCrossRefGoogle Scholar
  70. 70.
    Adams J (2003) The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29(suppl 1):3–9PubMedCrossRefGoogle Scholar
  71. 71.
    Yoo CG, Lee S, Lee CT, Kim YW, Han SK, Shim YS (2000) Anti-inflammatory effect of heat shock protein induction is related to stabilization of I kappa B alpha through preventing I kappa B kinase activation in respiratory epithelial cells. J Immunol 164:5416–5123PubMedGoogle Scholar
  72. 72.
    Curry HA, Clemens RA, Shah S, et al (1999) Heat shock inhibits radiation-induced activation of NF-kappaB via inhibition of I-kappaB kinase. J Biol Chem 274:23061–23067PubMedCrossRefGoogle Scholar
  73. 73.
    Malhotra V, Kooy NW, Denenberg AG, Dunsmore KE, Wong HR (2002) Ablation of the heat shock factor-1 increases susceptibility to hyperoxia-mediated cellular injury. Exp Lung Res 28:609–622PubMedCrossRefGoogle Scholar
  74. 74.
    Ran R, Lu A, Zhang L, et al (2004) Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev 18:1466–1481PubMedCrossRefGoogle Scholar
  75. 75.
    Weiss YG, Bromberg Z, Goloubinoff P, Deutschman CS (2005) HSP-70 Expression in the lung attenuates ARDS by disrupting NF-κB. Intensive Care Med 31(suppl 1):S45 (abst)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Z. Bromberg
    • 1
  • Y. G. Weiss
    • 2
  • C. S. Deutschman
    • 2
  1. 1.Department of Anesthesia and Critical Care MedicineHadassah Hebrew University School of MedicineJerusalemIsrael
  2. 2.Department of Anesthesiology and Critical Care MedicineUniversity of Pennsylvania School of Medicine Dulles 781A/HUPPhiladelphiaUSA

Personalised recommendations