Genetics and Severe Sepsis

  • J. Texereau
  • V. Lemiale
  • J. -P. Mira
Conference paper
Part of the Update in Intensive Care and Emergency Medicine book series (volume 44)


Septic Shock Severe Sepsis Cerebral Malaria Invasive Pneumococcal Disease Meningococcal Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554PubMedCrossRefGoogle Scholar
  2. 2.
    Alberti C, Brun-Buisson C, Burchardi H, et al (2002) Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med 28:108–121PubMedCrossRefGoogle Scholar
  3. 3.
    Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310PubMedCrossRefGoogle Scholar
  4. 4.
    De Maio A, Torres MB, Reeves RH (2005) Genetic determinants influencing the response to injury, inflammation, and sepsis. Shock 23:11–17PubMedCrossRefGoogle Scholar
  5. 5.
    Arcaroli J, Fessler MB, Abraham E (2005) Genetic polymorphisms and sepsis. Shock 24:300–312PubMedCrossRefGoogle Scholar
  6. 6.
    Dahmer MK, Randolph A, Vitali S, Quasney MW (2005) Genetic polymorphisms in sepsis. Pediatr Crit Care Med 6:S61–73PubMedCrossRefGoogle Scholar
  7. 7.
    Texereau J, Chiche JD, Taylor W, Choukroun G, Comba B, Mira JP (2005) The importance of Toll-like receptor 2 polymorphisms in severe infections. Clin Infect Dis 41(Suppl 7):S408–415PubMedCrossRefGoogle Scholar
  8. 8.
    Texereau J, Pene F, Chiche JD, Rousseau C, Mira JP (2004) Importance of hemostatic gene polymorphisms for susceptibility to and outcome of severe sepsis. Crit Care Med 32:S313–319PubMedCrossRefGoogle Scholar
  9. 9.
    Worthley DL, Bardy PG, Mullighan CG (2005) Mannose-binding lectin: biology and clinical implications. Intern Med J 35:548–555PubMedCrossRefGoogle Scholar
  10. 10.
    Frodsham AJ, Hill AV (2004) Genetics of infectious diseases. Hum Mol Genet 13 Spec No 2:R187–194PubMedCrossRefGoogle Scholar
  11. 11.
    Hernandez-Valladares M, Naessens J, Iraqi FA (2005) Genetic resistance tomalaria in mouse models. Trends Parasitol 21:352–355PubMedCrossRefGoogle Scholar
  12. 12.
    Stewart D, Fulton WB, Wilson C, et al (2002) Genetic contribution to the septic response in a mouse model. Shock 18:342–347PubMedCrossRefGoogle Scholar
  13. 13.
    Knuefermann P, Sakata Y, Baker JS, et al (2004) Toll-like receptor 2 mediates Staphylococcus aureus-induced myocardial dysfunction and cytokine production in the heart. Circulation 110:3693–3698PubMedCrossRefGoogle Scholar
  14. 14.
    Takeuchi O, Hoshino K, Kawai T, et al (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443–451PubMedCrossRefGoogle Scholar
  15. 15.
    Drennan MB, Nicolle D, Quesniaux VJ, et al (2004) Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am J Pathol 164:49–57PubMedGoogle Scholar
  16. 16.
    Ben-Ali M, Barbouche MR, Bousnina S, Chabbou A, Dellagi K (2004) Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin Diagn Lab Immunol 11:625–626PubMedCrossRefGoogle Scholar
  17. 17.
    Bochud PY, Hawn TR, Aderem A (2003) Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J Immunol 170:3451–3454PubMedGoogle Scholar
  18. 18.
    Kang TJ, Chae GT(2001) Detection of Toll-like receptor 2 (TLR2)mutation in the lepromatous leprosy patients. FEMS Immunol Med Microbiol 31:53–58PubMedCrossRefGoogle Scholar
  19. 19.
    Lorenz E, Mira JP, Cornish KL, Arbour NC, Schwartz DA (2000) A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 68:6398–6401PubMedCrossRefGoogle Scholar
  20. 20.
    Ogus AC, Yoldas B, Ozdemir T, et al (2004) The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 23:219–223PubMedCrossRefGoogle Scholar
  21. 21.
    Lin WJ, Wang CC, Lo WT, Chu ML, Lee CM (2005) Dizygotic twins discordant for early-onset Citrobacter koseri and group B streptococcal sepsis. J Formos Med Assoc 104:367–369PubMedGoogle Scholar
  22. 22.
    Malaty HM, Engstrand L, Pedersen NL, Graham DY (1994) Helicobacter pylori infection: genetic and environmental influences. A study of twins. Ann Intern Med 120:982–986PubMedGoogle Scholar
  23. 23.
    Simonds B (1957) The collection of 300 twin index cases for a study of tuberculosis in twins and their families. Acta Genet Stat Med 7:42–47PubMedGoogle Scholar
  24. 24.
    Sorensen TI, Nielsen GG, Andersen PK, Teasdale TW (1988) Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 318:727–732PubMedCrossRefGoogle Scholar
  25. 25.
    Wang JE (2005) Can single nucleotide polymorphisms in innate immune receptors predict development of septic complications in intensive care unit patients? Crit Care Med 33:695–696PubMedCrossRefGoogle Scholar
  26. 26.
    Yuan FF, Tanner J, Chan PK, et al (2005) Influence of Fcgamma RIIA and MBL polymorphisms on severe acute respiratory syndrome. Tissue Antigens 66:291–296PubMedCrossRefGoogle Scholar
  27. 27.
    Puel A, Yang K, Ku CL, et al (2005) Heritable defects of the human TLR signalling pathways. J Endotoxin Res 11:220–224PubMedCrossRefGoogle Scholar
  28. 28.
    Picard C, Casanova JL (2005) Novel primary immunodeficiencies. Adv Exp Med Biol 568:89–99PubMedCrossRefGoogle Scholar
  29. 29.
    de Vries E (2001) Immunological investigations in children with recurrent respiratory infections. Paediatr Respir Rev 2:32–36PubMedCrossRefGoogle Scholar
  30. 30.
    Cunningham-Rundles C, Ponda PP (2005) Molecular defects in T-and B-cell primary immunodeficiency diseases. Nat Rev Immunol 5:880–892PubMedCrossRefGoogle Scholar
  31. 31.
    Casanova JL, Fieschi C, Bustamante J, et al (2005) From idiopathic infectious diseases to novel primary immunodeficiencies. J Allergy Clin Immunol 116:426–430PubMedCrossRefGoogle Scholar
  32. 32.
    Casanova JL, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581–620PubMedCrossRefGoogle Scholar
  33. 33.
    Rowe SM, Miller S, Sorscher EJ (2005) Cystic fibrosis. N Engl J Med 352:1992–2001PubMedCrossRefGoogle Scholar
  34. 34.
    Drumm ML, Konstan MW, Schluchter MD, et al (2005) Genetic modifiers of lung disease in cystic fibrosis. N Engl J Med 353:1443–1453PubMedCrossRefGoogle Scholar
  35. 35.
    Hirschhorn JN (2005) Genetic approaches to studying common diseases and complex traits. Pediatr Res 57:74R–77RPubMedCrossRefGoogle Scholar
  36. 36.
    Burton PR, Tobin MD, Hopper JL (2005) Key concepts in genetic epidemiology. Lancet 366:941–951PubMedCrossRefGoogle Scholar
  37. 37.
    Cooper DN, Nussbaum RL, Krawczak M (2002) Proposed guidelines for papers describing DNA polymorphism-disease associations. Hum Genet 110:207–208PubMedCrossRefGoogle Scholar
  38. 38.
    Hattersley AT, McCarthy MI (2005) What makes a good genetic association study? Lancet 366:1315–1323PubMedCrossRefGoogle Scholar
  39. 39.
    Vitali SH, Randolph AG (2005) Assessing the quality of case-control association studies on the genetic basis of sepsis. Pediatr Crit Care Med 6:S74–77PubMedCrossRefGoogle Scholar
  40. 40.
    Ulevitch RJ, Mathison JC, da Silva Correia J (2004) Innateimmune responses during infection. Vaccine 22(Suppl 1):S25–30PubMedCrossRefGoogle Scholar
  41. 41.
    Vivier E, Malissen B (2005) Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat Immunol 6:17–21PubMedCrossRefGoogle Scholar
  42. 42.
    Lin MT, Albertson TE (2004) Genomic polymorphisms in sepsis. Crit Care Med 32:569–579PubMedCrossRefGoogle Scholar
  43. 43.
    Garred P, Larsen F, Seyfarth J, Fujita R, Madsen HO (2006) Mannose-binding lectin and its genetic variants. Genes Immun 7:85–94PubMedCrossRefGoogle Scholar
  44. 44.
    Hibberd ML, Sumiya M, Summerfield JA, Booy R, Levin M (1999) Association of variants of the gene for mannose-binding lectin with susceptibility to meningococcal disease. Meningococcal Research Group. Lancet 353:1049–1053PubMedCrossRefGoogle Scholar
  45. 45.
    Roy S, Knox K, Segal S, et al (2002) MBL genotype and risk of invasive pneumococcal disease: a case-control study. Lancet 359:1569–1573PubMedCrossRefGoogle Scholar
  46. 46.
    Garred P, JJ S, Quist L, Taaning E, Madsen HO (2003) Association of mannose-binding lectin polymorphisms with sepsis and fatal outcome, in patients with systemic inflammatory response syndrome. J Infect Dis 188:1394–1403PubMedCrossRefGoogle Scholar
  47. 47.
    van der Pol WL, Huizinga TW, Vidarsson G, et al (2001) Relevance of Fcgamma receptor and interleukin-10 polymorphisms for meningococcal disease. J Infect Dis 184:1548–1555PubMedCrossRefGoogle Scholar
  48. 48.
    Schroder NW, Schumann RR (2005) Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis 5:156–164PubMedGoogle Scholar
  49. 49.
    Arbour NC, Lorenz E, Schutte BC, et al. (2000) TLR4mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25:187–191PubMedCrossRefGoogle Scholar
  50. 50.
    Lorenz E, Mira JP, Frees KL, Schwartz DA (2002) Relevance ofmutations in the TLR4 receptor in patients with gram-negative septic shock. Arch Intern Med 162:1028–1032PubMedCrossRefGoogle Scholar
  51. 51.
    Child NJ, Yang IA, Pulletz MC, et al (2003) Polymorphisms in Toll-like receptor 4 and the systemic inflammatory response syndrome. Biochem Soc Trans 31:652–653PubMedCrossRefGoogle Scholar
  52. 52.
    Emonts M, Hazelzet JA, de Groot R, Hermans PW (2003) Host genetic determinants of Neisseria meningitidis infections. Lancet Infect Dis 3:565–577PubMedCrossRefGoogle Scholar
  53. 53.
    Sutherland AM, Walley KR, Russell JA (2005) Polymorphisms in CD14, mannose-binding lectin, and Toll-like receptor-2 are associated with increased prevalence of infection in critically ill adults. Crit Care Med 33:638–644PubMedCrossRefGoogle Scholar
  54. 54.
    Gibot S, Cariou A, Drouet L, Rossignol M, Ripoll L (2002) Association between a genomic polymorphismwithin the CD14 locus and septic shock susceptibility andmortality rate. Crit Care Med 30:969–973PubMedCrossRefGoogle Scholar
  55. 55.
    D’Avila LC, Albarus MH, Franco CR, et al (2006) Effect of CD14-260C>T polymorphismon the mortality of critically ill patients. Immunol Cell Biol 84:342–348PubMedCrossRefGoogle Scholar
  56. 56.
    Heesen M, Bloemeke B, Schade U, Obertacke U, Majetschak M (2002) The-260C->T promoter polymorphism of the lipopolysaccharide receptor CD14 and severe sepsis in traumapatients. Intensive Care Med 28:1161–1163PubMedCrossRefGoogle Scholar
  57. 57.
    Adrie C, Alberti C, Chaix-Couturier C, et al (2005) Epidemiology and economic evaluation of severe sepsis in France: age, severity, infection site, and place of acquisition (community, hospital, or intensive care unit) as determinants of workload and cost. J Crit Care 20:46–58PubMedCrossRefGoogle Scholar
  58. 58.
    Ulloa L, Tracey KJ (2005) The “cytokine profile”: a code for sepsis. Trends Mol Med 11:56–63PubMedCrossRefGoogle Scholar
  59. 59.
    Haukim N, Bidwell JL, Smith AJ, et al (2002) Cytokine gene polymorphismin human disease: on-line databases, supplement 2. Genes Immun 3:313–330PubMedCrossRefGoogle Scholar
  60. 60.
    Dinarello CA (2003) Anti-cytokine therapeutics and infections. Vaccine 21(Suppl 2):S24–34PubMedCrossRefGoogle Scholar
  61. 61.
    Pociot F, Molvig J, Wogensen L, et al (1991)Atumour necrosis factor beta gene polymorphism in relation tomonokine secretion and insulin-dependent diabetes mellitus. Scand J Immunol 33:37–49PubMedCrossRefGoogle Scholar
  62. 62.
    Heesen M, Kunz D, Bachmann-Mennenga B, Merk HF, Bloemeke B (2003) Linkage disequilibrium between tumor necrosis factor (TNF)-alpha-308 G/A promoter and TNF-beta NcoI polymorphisms: Association with TNF-alpha response of granulocytes to endotoxin stimulation. Crit Care Med 31:211–214PubMedCrossRefGoogle Scholar
  63. 63.
    Gimenez F, Barraud de Lagerie S, Fernandez C, Pino P, Mazier D (2003) Tumor necrosis factor alpha in the pathogenesis of cerebral malaria. Cell Mol Life Sci 60:1623–1635PubMedCrossRefGoogle Scholar
  64. 64.
    Imahara SD, O’Keefe GE (2004) Genetic determinants of the inflammatory response. Curr Opin Crit Care 10:318–324PubMedCrossRefGoogle Scholar
  65. 65.
    Mira JP, Cariou A, Grall F, et al (1999) Association of TNF2, a TNF-alpha promoter polymorphism, with septic shock susceptibility and mortality: a multicenter study. JAMA 282:561–568PubMedCrossRefGoogle Scholar
  66. 66.
    Hedberg CL, Adcock K, Martin J, Loggins J, Kruger TE, Baier RJ (2004) Tumor necrosis factor alpha — 308 polymorphism associated with increased sepsis mortality in ventilated very low birth weight infants. Pediatr Infect Dis J 23:424–428PubMedGoogle Scholar
  67. 67.
    Gordon AC, Lagan AL, Aganna E, et al (2004) TNF and TNFR polymorphisms in severe sepsis and septic shock: a prospective multicentre study. Genes Immun 5:631–640PubMedCrossRefGoogle Scholar
  68. 68.
    Peters DL, Barber RC, Flood EM, Garner HR, O’Keefe GE (2003) Methodologic quality and genotyping reproducibility in studies of tumor necrosis factor-308 G->A single nucleotide polymorphismand bacterial sepsis: implications for studies of complex traits. Crit Care Med 31:1691–1696PubMedCrossRefGoogle Scholar
  69. 69.
    Scumpia PO, Moldawer LL (2005) Biology of interleukin-10 and its regulatory roles in sepsis syndromes. Crit Care Med 33:S468–S471PubMedCrossRefGoogle Scholar
  70. 70.
    Neidhardt R, Keel M, Steckholzer U, et al (1997) Relationship of interleukin-10 plasma levels to severity of injury and clinical outcome in injured patients. J Trauma 42:863–870PubMedCrossRefGoogle Scholar
  71. 71.
    Friedman G, Jankowski S, Marchant A, Goldman M, Kahn RJ, Vincent JL (1997) Blood interleukin 10 levels parallel the severity of septic shock. J Crit Care 12:183–187PubMedCrossRefGoogle Scholar
  72. 72.
    Kremer Hovinga JA, Franco RF, Zago MA, Ten Cate H, Westendorp RG, Reitsma PH (2004) A functional single nucleotide polymorphism in the thrombin-activatable fibrinolysis inhibitor (TAFI) gene associates with outcome of meningococcal disease. J Thromb Haemost 2:54–57PubMedCrossRefGoogle Scholar
  73. 73.
    de Craen AJ, Posthuma D, Remarque EJ, van den Biggelaar AH, Westendorp RG, Boomsma DI (2005) Heritability estimates of innate immunity: an extended twin study. Genes Immun 6:167–170PubMedCrossRefGoogle Scholar
  74. 74.
    Gibson AW, Edberg JC, Wu J, Westendorp RG, Huizinga TW, Kimberly RP (2001) Novel single nucleotide polymorphisms in the distal IL-10 promoter affect IL-10 production and enhance the risk of systemic lupus erythematosus. J Immunol 166:3915–3922PubMedGoogle Scholar
  75. 75.
    Mozzato-Chamay N, Mahdi OS, Jallow O, Mabey DC, Bailey RL, Conway DJ (2000) Polymorphisms in candidate genes and risk of scarring trachoma in a Chlamydia trachomatis-endemic population. J Infect Dis 182:1545–1548PubMedCrossRefGoogle Scholar
  76. 76.
    Helminen ME, Kilpinen S, Virta M, Hurme M (2001) Susceptibility to primary Epstein-Barr virus infection is associated with interleukin-10 gene promoter polymorphism. J Infect Dis 184:777–780PubMedCrossRefGoogle Scholar
  77. 77.
    Gallagher PM, Lowe G, Fitzgerald T, et al (2003) Association of IL-10 polymorphism with severity of illness in community acquired pneumonia. Thorax 58:154–156PubMedCrossRefGoogle Scholar
  78. 78.
    Lowe PR, Galley HF, Abdel-Fattah A, Webster NR (2003) Influence of interleukin-10 polymorphisms on interleukin-10 expression and survival in critically ill patients. Crit Care Med 31:34–38PubMedCrossRefGoogle Scholar
  79. 79.
    Wattanathum A, Manocha S, Groshaus H, Russell JA, Walley KR (2005) Interleukin-10 haplotype associated with increased mortality in critically ill patients with sepsis from pneumonia but not in patients with extrapulmonary sepsis. Chest 128:1690–1698PubMedCrossRefGoogle Scholar
  80. 80.
    Menges T, Hermans PW, Little SG, et al (2001) Plasminogen-activator-inhibitor-1 4G/5G promoter polymorphism and prognosis of severely injured patients. Lancet 357:1096–1097PubMedCrossRefGoogle Scholar
  81. 81.
    Geishofer G, Binder A, Muller M, et al (2005) 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene in children with systemic meningococcaemia. Eur J Pediatr 164:486–490PubMedCrossRefGoogle Scholar
  82. 82.
    Haralambous E, Hibberd ML, Hermans PW, Ninis N, Nadel S, Levin M (2003) Role of functional plasminogen-activator-inhibitor-1 4G/5G promoter polymorphism in susceptibility, severity, and outcome of meningococcal disease in Caucasian children. Crit Care Med 31:2788–2793PubMedCrossRefGoogle Scholar
  83. 83.
    Cariou A, Chiche JD, Charpentier J, Dhainaut JF, Mira JP (2002) The era of genomics: impact on sepsis clinical trial design. Crit Care Med 30:S341–348PubMedCrossRefGoogle Scholar
  84. 84.
    Bashyam MD, Hasnain SE (2003) The human genome sequence: impact on health care. Indian J Med Res 117:43–65PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • J. Texereau
    • 1
  • V. Lemiale
    • 2
  • J. -P. Mira
    • 2
  1. 1.Cochin Institute of Molecular Genetics Groupe Hospitalier Cochin — St Vincent de PaulRené Descartes University — Paris VParis Cedex 14France
  2. 2.Medical Intensive Care Unit, Groupe Hospitalier Cochin — St Vincent de PaulRené Descartes University — Paris VParis Cedex 14France

Personalised recommendations